Homework 4

Due date: Feb 6, 2020, 11:55PM.

Bibliography: Trench Chap. 4. The first exercise in each problem set is solved for you to use as a model.

1. Exercises 1-5, p. 138

Ex 1. Half life $\tau = 3200$ years, initial amount $Q_0 = 20$ g. Radioactive decay model Q' = -kQ, $k = (\ln 2)/\tau$ has solution

$$Q(t) = e^{-kt}Q_0 = \exp\left[-\frac{t}{\tau}\ln 2\right]Q_0 = 20 \times 2^{-t/\tau} \text{ g.}$$

Ex 2. $\tau = 2$ days

$$Q(t)/Q_0 = e^{-kt} = 0.1 \Rightarrow t = -\frac{1}{k} \ln 0.1 = -\frac{\tau}{\ln 2} \ln 0.1 = -\frac{2}{\ln 2} \ln 0.1 = 6.64 \text{ days}$$

Ex 3. State condition

$$Q(10) \, / \, Q_0 = e^{-10k} = 0.75 \Rightarrow k = \frac{\ln 2}{\tau} = -\frac{1}{10} \ln 0.75 \Rightarrow \tau = -\frac{10 \ln 2}{\ln 0.75} = 24.1 \, \text{minutes}$$

Ex 4. State conditions

$$\frac{100 Q(0)}{Q(0) + P} = p_0, \frac{100 Q(t)}{Q(t) + P} = p_1,$$

with Q(0) initial amount of radioactive substance, Q(t) final amount, and P non-radioactive substance, assumed constant in time. Eliminate P, and replace $Q(t) = e^{-kt}Q(0)$

Ex 5.

2. Exercises 15-19, pp. 138-9

Ex 15. Gold creation rate r=1 oz/hr, theft rate $s=\frac{1}{20}W(t)$ oz/hr. Model equation $W'=r-s=r-\frac{1}{20}W$, and solution to homogeneous problem $W'+\frac{1}{20}W=0$ is $W_h=e^{-t/20}$. Variation of parameters, $W=uW_h$

$$u'W_h = r \Rightarrow u' = re^{t/20} \Rightarrow u = 20re^{t/20} + c \Rightarrow W(t) = 20r + ce^{-t/20}$$
.

Initial condition $W(0) = 20r + c = 1 \Rightarrow c = 1 - 20r \Rightarrow W(t) = 20r(1 - e^{-t/20}) + e^{-t/20}$, $\lim_{t\to\infty} W(t) = 20r$. Check in Maxima

(%i3) ode2('diff(W,t)=r-W/20,W,t);

(%o3)
$$W = e^{-\frac{t}{20}} \left(20 \, r \, e^{\frac{t}{20}} + \%c \right)$$

(%i4) ic1(%,t=0,W=1);

(%o4)
$$W = e^{-\frac{t}{20}} \left(20 r e^{\frac{t}{20}} - 20 r + 1 \right)$$

(%i5)

Ex 16.

Ex 17.

Ex 18.

Ex 19.

3. Exercises 1-5, p.148

Ex 1. Room temperature $T_0 = 70^{\circ}$ F, freezer temperature $T_1 = 12^{\circ}$ F. Model equation for thermometer temperature T(t) is $T' = -k(T - T_1)$, $T(0) = T_0$. Solution is $T = T_1 + (T_0 - T_1)e^{-kt}$. From T(1/2) = 40 obtain

$$12 + 58e^{-k/2} = 40 \Rightarrow k = -2\ln\frac{28}{58} = \ln\left(\frac{29}{14}\right)^2$$
.

Evaluate

$$T(2) = 12 + 58 \exp\left[-2\ln\left(\frac{29}{14}\right)^2\right] = 12 + 58\left(\frac{14}{29}\right)^4 = 15.2^{\circ} \text{ F}.$$

Note that the displayed measurement exhibits a measurable number of digits after the decimal point, rather than reproducing the full, but physically impossible to measure, numerical approximation from the calculation below.

(%i13) float(12+58*(14/29)^4)

(%o13) 15.15027266390586

(%i14)

Ex 2.

Ex 3.

Ex 4.

Ex 5.

4. Exercises 1-5, p. 160

Ex 1. Weight m=192 lb = 87.3kg, model equation is mv'=mg-kv, with $g=9.8m/s^2$, k=2.5 lbf s/ft = 36.54 kg/s, with solution v(t)=mg/k [exp(-kt/m)-1], and terminal velocity $\lim_{t\to\infty}v(t)=mg/k=23.4m/s$.

Ex 2.

Ex 3.

Ex 4.

Ex 5.