MATH383: A first course in differential equationsFebruary 7, 2020

Homework 4 Solution

Due date: Feb 6, 2020, 11:55PM.

Bibliography: Trench Chap. 4. The first exercise in each problem set is solved for you to use as a model.

  1. Exercises 1-5, p. 138

    Ex 1

    Half life τ=3200years, initial amount Q0=20g. Radioactive decay model Q'=-kQ, k=(ln2)/τ has solution

    Q(t)=e-ktQ0=exp[-tτln2]Q0=20×2-t/τg.
    Ex 2
    Ex 3
    Ex 4
    Ex 5

  2. Exercises 15-19, pp. 138-9

    Ex 15

    Gold creation rate r=1 oz/hr, theft rate s=120W(t) oz/hr. Model equation W'=r-s=r-120W, and solution to homogeneous problem W'+120W=0 is Wh=e-t/20. Variation of parameters, W=uWh

    u'Wh=ru'=ret/20u=20ret/20+cW(t)=20r+ce-t/20.

    Initial condition W(0)=20r+c=1c=1-20rW(t)=20r(1-e-t/20)+e-t/20, limtW(t)=20r.

    Check in Maxima

    (%i3) 

    ode2('diff(W,t)=r-W/20,W,t);

    (%o3) W=e-t20(20ret20+%c)

    (%i4) 

    ic1(%,t=0,W=1);

    (%o4) W=e-t20(20ret20-20r+1)

    (%i5) 

    
                            

    Ex 16
    Ex 17
    Ex 18
    Ex 19

  3. Exercises 1-5, p.148

    Ex 1

    Room temperature T0=70F, freezer temperature T1=12F. Model equation for thermometer temperature T(t) is T'=-k(T-T1),T(0)=T0. Solution is T=T1+(T0-T1)e-kt. From T(1/2)=40 obtain

    12+58e-k/2=40k=-2ln2858=ln(2914)2.

    Evaluate

    T(2)=12+58exp[-2ln(2914)2]=12+58(1429)4=15.15F.

    (%i13) 

    float(12+58*(14/29)^4)

    (%o13) 15.15027266390586

    (%i14) 

    
                            

    Ex 2
    Ex 3
    Ex 4
    Ex 5

  4. Exercises 1-5, p. 160

    Ex 1

    Weight m=192lb=87.3kg, model equation is mv'=mg-kv, with g=9.8m/s2, k=2.5lbfs/ft=36.54kg/s, with solution v(t)=mg/k[exp(-kt/m)-1], and terminal velocity limtv(t)=mg/k=23.4m/s.

    Ex 2
    Ex 3
    Ex 4
    Ex 5