MATH383: A first course in differential equationsFebruary 7, 2020

Homework 5 Solution

Due date: Feb 13, 2020, 11:55PM.

Bibliography: Lesson07.pdf Lesson08.pdf. The first exercise in each problem set is solved for you to use as a model.

  1. Consider 𝒱=3, 𝒮=. Establish whether for given operations , (𝒱,𝒮,,) is a vector space or not.

    Ex 1

    𝒙=(x1,x2,x3),𝒚=(y1,y2,y3), 𝒙,𝒚𝒱=3, 𝒙𝒚=(2x1+2y1,2x2+2y2,2x3+2y3), and with α𝒮=, α𝒙=(αx1,αx2,αx3)

    Solution. Check associativity, (𝒙𝒚)𝒛=𝒙(𝒚𝒛). Compute

    𝒖=𝒙𝒚=(2x1+2y1,2x2+2y2,2x3+2y3) 𝒗=𝒚𝒛=(2y1+2z1,2y2+2z2,2y3+2z3)
    𝒖+𝒛=(4x1+4y1+2z1,4x2+4y2+2z2,4x3+4y3+2z2)
    𝒙+𝒗=(2x1+4y1+4z1,2x2+4y2+4z2,2x2+4y2+4z2)

    Since 𝒖+𝒛𝒙+𝒗, associativity is not satisified and (𝒱,𝒮,,) is not a vector space. Note: it is sufficient to find one unsatisfied property to prove that (𝒱,𝒮,,) is not a vector space. However to prove that (𝒱,𝒮,,) is indeed a vector space, all properties must be verified/

    Ex 2

    𝒙𝒚=(x1-y1,x2-y2,x3-y3), α𝒙=(αx1,αx2,αx3).

    Solution. Check associativity

    𝒙𝒚=(x1-y1,x2-y2,x3-y3) 𝒚𝒛=(y1-z1,y2-z2,y3-z3) 𝒙(𝒚𝒛)=(x1-y1+z1,x2-y2+z2,x3-y3+z3) (𝒙𝒚)𝒛=(x1-y1-z1,x2-y2-z3,x3-y3-z3) 𝒙(𝒚𝒛)(𝒙𝒚)𝒛

    Not associative (e.g., 𝒙=𝒚=0, 𝒛=(1,0,0)), hence not a vector space.

    Ex 3

    𝒙𝒚=(x1+y1-1,x2+y2-1,x3+y3-1), α𝒙=(αx1,αx2,αx3).

    Solution. Check closure. 𝒙𝒚=(x1+y1-1,x2+y2-1,x3+y3-1)3?.

    Check existence of null element. Suppose the null element is denoted by 𝒏. From 𝒏𝒙=𝒙 deduce (n1+x1-1,n2+x2-1,n3+x3-1)=(x1,x2,x3) deduce 𝒏=(1,1,1). Verify if 𝒙𝒏=𝒏𝒙=𝒙

    𝒙𝒏=(x1,x2,x3)?,𝒏𝒙=(x1,x2,x3)?.

    Check commutativity.

    𝒙𝒚=(x1+y1-1,x2+y2-1,x3+y3-1) 𝒚𝒙=(y1+x1-1,y2+x2-1,y3+x3-1)=(x1+y1-1,x2+y2-1,x3+y3-1) ?

    Check associativity.

    𝒙𝒚=(x1+y1-1,x2+y2-1,x3+y3-1) 𝒚𝒛=(y1+z1-1,y2+z2-1,y3+z3-1) 𝒙(𝒚𝒛)=(x1+y1+z1-2,x2+y2+z2-2,x3+y3+z3-2) (𝒙𝒚)𝒛=(x1+y1+z1-2,x2+y2+z2-2,x3+y3+z3-2) 𝒙(𝒚𝒛)=(𝒙𝒚)𝒛?

    Check existence of opposite. Let 𝒂 denote the opposite of 𝒙. From 𝒙𝒂=𝒏 deduce

    (x1+a1-1,x2+a2-1,x2+a2-1)=(1,1,1)𝒂=(2-x1,2-x2,2-x3).?

    Check distributivity properties.

    α(𝒙𝒚)=α(x1+y1-1,x2+y2-1,x3+y3-1)=(αx1+αy1-α,αx2+αy2-α,αx3+αy3-α) α𝒙α𝒚=(αx1,αx2,αx3)(αy1,αy2,αy3)=(αx1+αy1-1,αx2+αy2-1,αx3+αy3-1)

    Distributivity is not satisfied (e.g., for α=0), hence not a vector space.

    Note: this exercise shows that the vector space properties have to be carefully checked individually, using the formal definitions without relying on intuition. For example, it is shown that the null element does not need to be (0,0,0). All the commutative group properties were satisfied, but scalar multiplication did not verify one of the distributivity properties. Remember: don't assume, prove!.

    Ex 4

    𝒙𝒚=(x1+y1,x2-y2,x3+y3), α𝒙=(αx1,αx2,αx3).

    Solution. Check commutativity

    𝒙𝒚=(x1+y1,x2-y2,x3+y3)(y1+x1,y2-x2,y3+x3)=𝒚𝒙 ,

    not verified. For example 𝒙=(0,1,0), 𝒚=(0,-1,0)

    𝒙𝒚=(0,2,0)(0,-2,0)=𝒚𝒙 ,

    hence not a vector space.

    Ex 5

    𝒙𝒚=(x1+y1,x2+y2,x3+y3), α𝒙=(α+x1,αx2,αx3).

    Solution. Check distributivity

    α(β𝒙)=α(β+x1,βx2,βx3)=(α+β+x1,αβx2,αβx3) (αβ)𝒙=(αβ+x1,αβx2,αβx3) α(β𝒙)(αβ)𝒙

    not distributive, example α=β=1, hence not a vector space.

  2. Consider 𝒱2×2, a subset of all 2 by 2 real-component matrices with operations

    𝑨,𝑩2×2,𝑨=( a11 a12 a21 a22 ),𝑩=( b11 b12 b21 b22 ),𝑨𝑩=( a11+b11 a12+b12 a21+b21 a22+b22 )
    α𝑨=( αa11 αa12 αa21 αa22 ).

    Determine whether the following are vector spaces

    Ex 1

    𝒱 is the set of skew-symmetric matrices, 𝑨𝒱 𝑨T=-𝑨.

    Solution. From 𝑨=-𝑨T deduce that

    ( a11 a12 a21 a22 )=-( a11 a21 a12 a22 )𝑨=( 0 a -a 0 ).

    Verify vector space properties for 𝑨,𝑩,𝑪𝒱, α,β:

    Closure
    𝑨+𝑩=( 0 a -a 0 )+( 0 b -b 0 )=( 0 a+b -(a+b) 0 )𝒱?
    Associativity
    (𝑨+𝑩)+𝑪=( 0 a+b -(a+b) 0 )+( 0 c -c 0 )=( 0 a+b+c -(a+b+c) 0 )
    𝑨+(𝑩+𝑪)=( 0 a -a 0 )+( 0 b+c -(b+c) 0 )=( 0 a+b+c -(a+b+c) 0 ).?
    Identity
    𝑨+𝟎=( 0 a -a 0 )+( 0 0 0 0 )=( 0 a -a 0 )?
    Inverse
    𝑨+(-𝑨)=( 0 a -a 0 )+( 0 -a a 0 )=( 0 0 0 0 )?
    Commutativity
    𝑨+𝑩=( 0 a+b -(a+b) 0 )=( 0 b+a -(b+a) 0 )=𝑩+𝑨.?
    Distributivity
    α(𝑨+𝑩)=( 0 α(a+b) -α(a+b) 0 )=( 0 α.a+αb) -α.a-αb) 0 )=α𝑨+α𝑩?
    (α+β)𝑨=( 0 (α+β)a -(α+β)a 0 )=( 0 αa+βa -αa-βa 0 )=α𝑨+β𝑨?
    α(β𝑨)=α( 0 βa -βa 0 )=( 0 αβa -αβa 0 )=(αβ)𝑨.?

    All properties are verified, hence skew-symmetric matrices form a vector space.

    Ex 2

    𝒱 is the set of upper-triangular matrices, 𝑨𝒱 a21=0.

    Solution. (Tip: when drafting answers such as this, it is convenient to cope and paste the above template and also copy and paste various intermediate results, but do be careful and ensure that the specific definitions in the new exercise are adhered to.)

    Verify vector space properties for 𝑨,𝑩,𝑪𝒱, α,β:

    Closure
    𝑨+𝑩=( a11 a12 0 a22 )+( b11 b12 0 b22 )=( a11+b11 a12+b12 0 a22+b22 )𝒱?
    Associativity
    (𝑨+𝑩)+𝑪=( a11+b11 a12+b12 0 a22+b22 )+( c11 c12 0 c22 )=( a11+b11+c11 a12+b12+c12 0 a22+b22+c22 )
    𝑨+(𝑩+𝑪)=( a11 a12 0 a22 )+( b11+c11 b12+c12 0 b22+c22 )=( a11+b11+c11 a12+b12+c12 0 a22+b22+c22 ).?
    Identity
    𝑨+𝟎=( a11 a12 0 a22 )+( 0 0 0 0 )=( a11 a12 0 a22 )?
    Inverse
    𝑨+(-𝑨)=( a11 a12 0 a22 )+( -a11 -a12 0 -a22 )=( 0 0 0 0 )?
    Commutativity
    𝑨+𝑩=( a11+b11 a12+b12 0 a22+b22 )=( b11+a11 b12+a12 0 b22+a22 )=𝑩+𝑨.?
    Distributivity
    α(𝑨+𝑩)=( α(a11+b11) α(a12+b12) 0 α(a22+b22) )=( αa11+αb11 αa12+αb12 0 αa22+αb22 )=α𝑨+α𝑩?
    (α+β)𝑨=( (α+β)a11 (α+β)a12 0 (α+β)a22 )= αa11+βb11 αa12+βb12 0 αa22+βb22 =α𝑨+β𝑨?
    α(β𝑨)=α( βa11 βa12 0 βa22 )=( αβa11 αβa12 0 αβa22 )=(αβ)𝑨.?

    All properties are verified, hence upper-triangular matrices form a vector space.

    Ex 3

    𝒱 is the set of symmetric matrices, 𝑨𝒱 𝑨T=𝑨.

    Solution. From 𝑨=𝑨T deduce that

    ( a11 a12 a21 a22 )=( a11 a21 a12 a22 )𝑨=( a11 a12 a12 a22 ).

    Verify vector space properties for 𝑨,𝑩,𝑪𝒱, α,β:

    Closure
    𝑨+𝑩=( a11 a12 a12 a22 )+( b11 b12 b12 b22 )=( a11+b11 a12+b12 a12+b12 a22+b22 )𝒱?
    Associativity
    (𝑨+𝑩)+𝑪=( a11+b11 a12+b12 a12+b12 a22+b22 )+( c11 c12 c12 c22 )=( a11+b11+c11 a12+b12+c12 a12+b12+c12 a22+b22+c22 )
    𝑨+(𝑩+𝑪)=( a11 a12 a12 a22 )+( b11+c11 b12+c12 b12+c12 b22+c22 )=( a11+b11+c11 a12+b12+c12 a12+b12+c12 a22+b22+c22 ).?
    Identity
    𝑨+𝟎=( a11 a12 a12 a22 )+( 0 0 0 0 )=( a11 a12 a12 a22 )?
    Inverse
    𝑨+(-𝑨)=( a11 a12 a12 a22 )+( -a11 -a12 -a12 -a22 )=( 0 0 0 0 )?
    Commutativity
    𝑨+𝑩=( a11+b11 a12+b12 a12+b12 a22+b22 )=( b11+a11 b12+a12 b12+a12 b22+a22 )=𝑩+𝑨.?
    Distributivity
    α(𝑨+𝑩)=( α(a11+b11) α(a12+b12) α(a12+b12) α(a22+b22) )=( αa11+αb11 αa12+αb12 αa12+αb12 αa22+αb22 )=α𝑨+α𝑩?
    (α+β)𝑨=( (α+β)a11 (α+β)a12 (α+β)a12 (α+β)a22 )= αa11+βb11 αa12+βb12 αa12+βb12 αa22+βb22 =α𝑨+β𝑨?
    α(β𝑨)=α( βa11 βa12 βa12 βa22 )=( αβa11 αβa12 αβa12 αβa22 )=(αβ)𝑨.?

    All properties are verified, hence upper-triangular matrices form a vector space.

  3. Determine whether the set 𝒮 is linearly dependent or independent within the vector space 𝒱

    Ex 1
    𝒮={𝒖1,𝒖2}={( 2 1 3 ),( 0 -1 1 )},𝒱=3

    Solution. The first equation of the system a1𝒖1+a2𝒖2=𝟎 is 2a1+0a2=0a1=0. The second equation then states -a2=0, hence a1=a2=0, and 𝒖1,𝒖2 are linearly independent.

    Ex 2
    𝒮={𝒖1,𝒖2,𝒖3}={( 2 1 ),( 1 0 ),( 8 -3 )},𝒱=2

    Solution. Since (-3)𝒖1+14𝒖2=𝒖3, the vectors are linearly dependent.

    Ex 3
    𝒮={𝒖1,𝒖2,𝒖3}={( 1 0 1 ),( -1 1 0 ),( 0 1 1 )},𝒱=3

    Solution. (The missing 𝒖3 was a typo). Since 𝒖1+𝒖2=𝒖3, the vectors are linearly dependent.

  4. Determine whether the set 𝒮 is linearly dependent or independent within the vector space 𝒱. Here 𝒫n is the set of polynomials of degree at most n.

    Ex 1
    𝒮={𝒑1,𝒑2,𝒑3}={1,2x2+x+2,-x2+x},𝒱=𝒫2

    Solution. Denote 𝒒=a1𝒑1+a2𝒑2+a3𝒑3, and consider the equality 𝒒=𝟎. Note that 𝟎 is the zero polynomial, i.e. 𝒒(x)=𝟎(x)

    a1+a2(2x2+x+2)+a3(-x2+x)=0forallx

    For x=0 obtain a1+a2=0. Subsequently for x=1 obtain a1+5a2=0. Subtract to obtain 4a2=0a2=0, and then a1=0. Then for x=-1 obtain -2a3=0a3=0. The only choice of a1,a2,a3 to have a1𝒑1+a2𝒑2+a3𝒑3=𝟎 is a1=a2=a3=0, hence 𝒮 is a linearly independent set of vectors.

    Ex 2
    𝒮={𝒑1,𝒑2,𝒑3}={2,x,x3+2x2-1},𝒱=𝒫3

    Solution. Denote 𝒒=a1𝒑1+a2𝒑2+a3𝒑3, and consider the equality 𝒒=𝟎,

    2a1-a3+a2x+2a3x2+a3x3=0.

    Evaluate at x=-1,0,1 to obtain a system

    { 2a1-a3-a2+2a3-a3 = 0 2a1-a3 = 0 2a1-a3+a2+2a3+a3 = 0 .{ 2a1-a2 = 0 2a1-a3 = 0 2a1+a2+2a3 = 0 .{ 2a1-a2 = 0 a2-a3 = 0 2a2+2a3 = 0 . 2a1-a2 = 0 a2-a3 = 0 4a3 = 0

    with a1=a2=a3 the solution, hence 𝒮 is a linearly independent set.

    Ex 3
    𝒮={𝒑1,𝒑2,𝒑3,𝒑4}={x,x2,x2+2x,x3-x+1},𝒱=𝒫3

    Solution. Since 𝒑3=𝒑2+2𝒑1, 𝒮 is a linearly dependent set.