MATH383: A first course in differential equationsMarch 26, 2020

Homework 10

Due date: April 2, 2020, 11:55PM.

Bibliography: Trench, 10.1-6.4

  1. Exercise 5a-d, p. 516

    1. x'''=f(t,x,y,y'), y''=g(t,y,y'). Introduce notations

      z1=x,z2=x',z3=x'',z4=y,z5=y'

      and obtain system of 5 first-order equations

      { z1'=z2 z2'=z3 z3'=f(t,z1,z4,z5) z4'=z5 z5'=g(t,z4,z5) ..
    2. u'=f(t,u,v,v',w'),v''=g(t,u,v,v',w),w''=h(t,u,v,v',w,w'). Introduce notations

      z1=u,z2=v,z3=v',z4=w,z5=w'

      and obtain system of 5 first-order equations

      { z1'=f(t,z1,z2,z5) z2'=z3 z3'=g(t,z1,z2,z3,z4) z4'=z5 z5'=h(t,z1,z2,z3,z4,z5) ..
    3. y'''=f(t,y,y',y''). Introduce notations

      z1=y,z2=y',z3=y''

      and obtain system of 3 first-order equations

      { z1'=z2 z2'=z3 z3'=f(t,z1,z2) ..
    4. y(4)=f(t,y). Introduce notations

      z1=y,z2=y',z3=y'',z4=y'''

      and obtain system of 4 first-order equations

      { z1'=z2 z2'=z3 z3'=z4 z4'=f(t,z1) ..
  2. Exercises 8a,b,e,f, p. 521

    a) From

    𝒀=( e6t e-2t e6t -e-2t ),𝑨=( 2 4 4 2 )

    compute

    𝒀'=( 6e6t -2e-2t 6e6t 2e-2t )=( 2 4 4 2 )( e6t e-2t e6t -e-2t )=( (2+4)e6t (2-4)e-2t (4+2)e6t (4-2)e-2t )?.

    b) From

    𝒀=( e-4t -2e3t e-4t 5e3t ),𝑨=( -2 -2 -5 1 )

    compute

    𝒀'=( -4e-4t -6e3t -4e-4t 15e3t )=( -2 -2 -5 1 )( e-4t -2e3t e-4t 5e3t )=( (-2-2)e-4t (4-10)e3t (-5+1)e-4t (10+5)e3t )?.

    e) From

    𝒀=( et e-t e-2t et 0 -2e-2t 0 0 e-2t ),𝑨=( -1 2 3 0 1 6 0 0 -2 )

    compute 𝒀'

    ( et -e-t -2e-2t et 0 4e-2t 0 0 -2e-2t )=( -1 2 3 0 1 6 0 0 -2 )( et e-t e-2t et 0 -2e-2t 0 0 e-2t )=( (-1+2)et (-1)e-t (-1-4+3)e-2t (1)et 0 (-2+6)e-2t 0 0 (-2)e-2t )?.

    f) (same procedure as above)

  3. Exercises 7,8, p. 528-9

    Ex 7) (a) is verified in (2a) above.

    (b) In the general solution

    𝒚(t)=c1( e6t e6t )+c2( e-2t -e-2t )

    impose initial condition

    𝒚(0)=c1( 1 1 )+c2( 1 -1 )=( -3 9 )

    a linear system for (c1,c2), with solution c1=3, c2=-6, hence

    c) Replace t=0 in

    𝒀(t)=( e6t e-2t e6t -e-2t )

    to obtain

    𝒀(0)=( 1 1 1 -1 )

    with inverse

    [𝒀(0)]-1=12( 1 1 1 -1 )

    and compute

    𝒀(t)[𝒀(0)]-1𝒌=( e6t e-2t e6t -e-2t )12( 1 1 1 -1 )( -3 9 )=( e6t e-2t e6t -e-2t )( 3 -6 )?
  4. Exercises 16,17,20,21, p. 541

16.

𝑨=( -7 4 -6 7 ),p(λ)=det|λI-𝑨|=| λ+7 -4 6 λ-7 |=λ2-49+24=λ2-25λ1,2=±5
eλ1t𝒙1,eλ2t𝒙2,λ1=-5
𝑨-λ1𝑰=( -2 4 -6 12 )( -2 4 0 0 )( -2 4 0 0 )( x11 x21 )=( 0 0 )-2x11+4x21=0𝒙1=( 2 1 )
𝑨𝒙=λ𝒙
𝒚(t)=c1eλ1t𝒙1+c2eλ2t𝒙2,𝒚(0)=c1𝒙1+c2𝒙2=( 2 -4 )
c1( 2 1 )+c2( 1/3 1 )=( k1 k2 )
𝒌=( k1 k2 )