MATH383: A first course in differential equationsApril 2, 2020
Due date: April 9, 2020, 11:55PM.
Bibliography: Lesson 21, Trench, 3.1-3.3
Exercises 1-5, p. 106
Exercises 1-5, p. 124
Exercise 13, p. 108
Exercises 13, p. 126
Here is a template for this numerical methods homework.
1. Euler's method. Ex.1. , , .
(%i1) |
|
(%i2) |
|
(%i5) |
|
(%i6) |
|
Ex. 2 , , .
(%i1) |
|
(%i2) |
|
(%i5) |
|
(%i6) |
|
Ex. 3. , , .
(%i6) |
|
(%i7) |
|
(%i10) |
|
(%i11) |
|
Ex. 4. , , .
(%i11) |
|
(%i12) |
|
(%i15) |
|
(%i16) |
|
Ex. 5. , , .
(%i11) |
|
(%i20) |
|
(%i23) |
|
(%i24) |
|
2. Runge-Kutta method. Ex.1. , , .
(%i6) |
|
(%i7) |
|
(%i10) |
|
(%i11) |
|
Ex. 2 , , .
(%i24) |
|
(%i25) |
|
(%i28) |
|
(%i29) |
|
Ex. 3. , , .
(%i29) |
|
(%i30) |
|
(%i33) |
|
(%i34) |
|
Ex. 4. , , .
(%i35) |
|
(%i36) |
|
(%i39) |
|
(%i40) |
|
Ex. 5. , , .
(%i40) |
|
(%i41) |
|
(%i44) |
|
(%i45) |
|
3. Exercise 13, p. 108. (Bonus point if you also do Euler's semilinear method)
(%i21) |
|
(%i23) |
|
(%i26) |
|
(%i27) |
|
(%i45) |
|
(%i47) |
|
(%i50) |
|
(%i51) |
|
(%i39) |
|
(%i41) |
|
(%i44) |
|
(%i45) |
|
The final values and relative errors from the three steps size are , ,, , , . Notice that the method shows first-order convergence, reducing the interval size by half reduces the relative error by half.
4. Exercises 13, p. 126.
(%i63) |
|
(%i65) |
|
(%i68) |
|
(%i69) |
|
(%i69) |
|
(%i71) |
|
(%i74) |
|
(%i75) |
|
(%i75) |
|
(%i77) |
|
(%i80) |
|
(%i81) |
|
The final values and relative errors from the three steps size are , ,, , , . Notice that the method shows high-order convergence (fourth), reducing the interval size by half reduces the relative error by sixteen.