MATH528Due date: 10/4/18
Exercise. PS4.3.1
is , with eigenvalues of , and the corresponding eigenvectors, and .
In[58]:=
A={{1,1},{3,-1}}; MatrixForm[A]
In[59]:=
lambda = Eigenvalues[A]; Lambda = DiagonalMatrix[lambda];
MatrixForm[Lambda]
In[62]:=
X = Transpose[Eigenvectors[A]]; MatrixForm[X]
The general solution is
Here are some additional verifications not required in your homework solution, but given to show that the above result is confirmed by the Mathematica DSolve function.
In[74]:=
y[t_]={y1[t],y2[t]};
sol[t_]=Expand[DSolveValue[ {y'[t] == A . y[t],
y1[0]==y10, y2[0]==y20},y[t],t]]
In[49]:=
sol[0]
In[75]:=
c = Inverse[X]. {y10,y20};
ans[t_]=Expand[c[[1]] Exp[lambda[[1]] t] X[[1]] + c[[2]]
Exp[lambda[[2]] t] X[[2]]]
In[78]:=
Simplify[ans[t] == sol[t]]
Exercise. PS1.1.6
In[1]:=
Exercise. PS1.1.7
In[1]:=
Exercise. PS1.1.8
In[1]:=
Exercise. PS1.2.2
In[1]:=
Exercise. PS1.2.3
In[1]:=
Exercise. PS1.2.4
In[1]:=
Exercise. PS1.3.5
In[1]:=
Problem. PS1.1.16
In[1]:=
Problem. PS1.1.17
In[1]:=
Problem. PS1.1.18
In[1]:=
Problem. PS1.3.22
In[1]:=