MATH528Due date: 08/29/18
Exercise. PS4.5.4
The Jacobian obtained by linearization is
At critical point:
, has eigenvalues (4,1), unstable node
(4,0), has eigenvalues (-4,1), saddle node
Exercise. PS4.5.5
The Jacobian obtained by linearization is
At critical point:
, has eigenvalues , center
(2,0), has eigenvalues (-1,1), saddle node
In[33]:=
Eigenvalues[{{0,1},{-1,0}}]
In[34]:=
Eigenvalues[{{0,1},{1,0}}]
In[35]:=
Exercise. PS4.5.6
The Jacobian obtained by linearization is
At critical point:
, has eigenvalues , center
(-1,0), has eigenvalues , center
In[33]:=
Eigenvalues[{{0,1},{-1,0}}]
In[35]:=
Eigenvalues[{{0,-2},{1,0}}]
In[36]:=
Exercise. PS4.5.7
The Jacobian obtained by linearization is
At critical point:
, has eigenvalues , decaying spiral
(-2,2), has eigenvalues , sadle point
In[36]:=
Eigenvalues[{{-1,1},{-1,-1}}]
In[37]:=
Eigenvalues[{{-1,-3},{-1,-1}}]
In[38]:=
Exercise. PS4.6.2
Solve eigenproblem to find eigendecomposition
Solution of homogeneous system
Seek particular solution by undetermined coefficients
Compute
General solution is
In[44]:=
A={{1,1},{3,-1}}; L=DiagonalMatrix[Eigenvalues[A]]
In[42]:=
X=Transpose[Eigenvectors[A]]
In[43]:=
Inverse[X]
In[45]:=
y={ -c1 Exp[-2t] + c2 Exp[2t] + 8 Sin[t], 3c1 Exp[-2t] +
c2 Exp[2t] + 8 Cos[t]}
In[47]:=
Simplify[D[y,t] == A.y + 10 {Cos[t],-Sin[t]}]
In[48]:=
Exercise. PS4.6.3
In[1]:=
Exercise. PS4.6.4
In[1]:=
Exercise. PS4.6.5
In[1]:=
Problem. PS1.1.16
In[1]:=
Problem. PS1.1.17
In[1]:=
Problem. PS1.1.18
In[1]:=
Problem. PS1.3.22
In[1]:=