MATH528Due date: 08/29/18

Homework 06

1Exercises

Exercise. PS4.5.4

Solution. System 𝒚'=𝒇(𝒚) has critical points at solutions of 𝒇(𝒚)=0,

{ y1(4-y1)=0 y2=0 .,(y1,y2){(0,0),(4,0)}.

The Jacobian obtained by linearization is

𝐀=𝒇𝒚=( 4-2y1 0 0 1 ).

At critical point:

Exercise. PS4.5.5

Solution. System 𝒚'=𝒇(𝒚) has critical points at solutions of 𝒇(𝒚)=0,

{ y2=0 y1(-1+12y1)=0 .,(y1,y2){(0,0),(2,0)}.

The Jacobian obtained by linearization is

𝐀=𝒇𝒚=( 0 1 -1+y1 0 ).

At critical point:

In[33]:=

Eigenvalues[{{0,1},{-1,0}}]

{i,-i}

In[34]:=

Eigenvalues[{{0,1},{1,0}}]

{-1,1}

In[35]:=

Exercise. PS4.5.6

Solution. System 𝒚'=𝒇(𝒚) has critical points at solutions of 𝒇(𝒚)=0,

{ y2=0 y1(1+y1)=0 .,(y1,y2){(0,0),(-1,0)}.

The Jacobian obtained by linearization is

𝐀=𝒇𝒚=( 0 1 -1-y1 0 ).

At critical point:

In[33]:=

Eigenvalues[{{0,1},{-1,0}}]

{i,-i}

In[35]:=

Eigenvalues[{{0,-2},{1,0}}]

{i2,-i2}

In[36]:=

Exercise. PS4.5.7

Solution. System 𝒚'=𝒇(𝒚) has critical points at solutions of 𝒇(𝒚)=0,

{ -y1+y2-y22=y2(2-y2)=0 -y1-y2=0 .,(y1,y2){(0,0),(-2,2)}.

The Jacobian obtained by linearization is

𝐀=𝒇𝒚=( -1 1-2y2 -1 -1 ).

At critical point:

In[36]:=

Eigenvalues[{{-1,1},{-1,-1}}]

{-1+i,-1-i}

In[37]:=

Eigenvalues[{{-1,-3},{-1,-1}}]

{-1-3,3-1}

In[38]:=

Exercise. PS4.6.2

Solution. System is 𝒚'=𝐀𝒚+𝒓(t),

( y1' y2' )=( 1 1 3 -1 )( y1 y2 )+10( cost -sint )

Solve eigenproblem 𝐀𝐗=𝐗𝚲 to find eigendecomposition

𝐗=( -1 1 3 1 ),𝚲=( -2 0 0 2 ).

Solution of homogeneous system

𝒚h=c1( -1 3 )e-2t+c2( 1 1 )e2t.

Seek particular solution by undetermined coefficients

𝒚p=( b11cost+b12sint b21cost+b22sint )=( b11 b12 b21 b22 )=𝐁( cost sint ).

Compute

𝒚p'=𝐀𝒚p+𝒓(t)𝐁( -sint cost )=𝐀( cost sint )+10( cost -sint )
-b11sint+b12cost=-2cost+10cost -b21sint+b22cost=2sint-10sint 𝐁=( 0 8 8 0 ).

General solution is

𝒚=c1( -1 3 )e-2t+c2( 1 1 )e2t+8( sint cost )

In[44]:=

A={{1,1},{3,-1}}; L=DiagonalMatrix[Eigenvalues[A]]

( -2 0 0 2 )

In[42]:=

X=Transpose[Eigenvectors[A]]

( -1 1 3 1 )

In[43]:=

Inverse[X]

( -14 14 34 14 )

In[45]:=

y={ -c1 Exp[-2t] + c2 Exp[2t] + 8 Sin[t], 3c1 Exp[-2t] + c2 Exp[2t] + 8 Cos[t]}

{c1(-e-2t)+c2e2t+8sin(t),3c1e-2t+c2e2t+8cos(t)}

In[47]:=

Simplify[D[y,t] == A.y + 10 {Cos[t],-Sin[t]}]

{-8sin(t)-10cos(t),8cos(t)-22sin(t)}={0,0}

In[48]:=

Exercise. PS4.6.3

Solution.

In[1]:=

Exercise. PS4.6.4

Solution.

In[1]:=

Exercise. PS4.6.5

Solution.

In[1]:=

2Problems

Problem. PS1.1.16

Solution.

In[1]:=

Problem. PS1.1.17

Solution.

In[1]:=

Problem. PS1.1.18

Solution.

In[1]:=

Problem. PS1.3.22

Solution.

In[1]:=

3Projects

3.1PS2.1.16