MATH52810/26/18

Mini-Lab 07

We use Laplace transforms to investigate how (electrical) circuits response to perturbations.

1Heaviside functions, t-shifting

Definition. The Heaviside (step) function u(t-a)is defined as

u(t-a)={ 0 ift<a 1 ift>a ..(a0)

The Laplace transform is

[u(t-a)]=0e-stu(t-a)dt=ae-stdt=[-e-sts]t=at=e-ass

Theorem. (Frequency-shifting) If F=(f), then the frequency-shifted function F(s-a) is the Laplace transform of f(t)=eatf(t-a)

(f)(s)=(eatf(t-a))(s)=F(s-a).

Theorem. (Time-shifting) If F=(f), then the time-shifted function f(t)=f(t-a)u(t-a) has Laplace transform

(f)(s)=(f(t-a)u(t-a))(s)=e-asF(s).

2Circuit response to perturbations

2.1Switch circuit on over time interval

A perturbation of amplitude V0 applied for time interval t[a,b] (e.g., voltage for electrical circuits) is

v(t)=V0[u(t-a)-u(t-b)].

In[2]:=

v[t_,V0_,a_,b_] := V0 (UnitStep[t-a]-UnitStep[t-b]);

vplt=Plot[v[t,1,1,2],{t,0,3},Axes->False,Frame->True,FrameLabel->{"t","v(t)"}];

Export["/home/student/courses/MATH528/vplt.png",vplt]

/home/student/courses/MATH528/vplt.png

In[3]:=

Figure 1. Single rectangular wave

2.1.1R-C (resistance-storage) circuit

Figure 2. Circuit response to single rectangular wave