MATH52810/26/18
We use Laplace transforms to investigate how (electrical) circuits response to perturbations.
Definition. The Heaviside (step) function is defined as
The Laplace transform is
Theorem. (Frequency-shifting) If , then the frequency-shifted function is the Laplace transform of
Theorem. (Time-shifting) If , then the time-shifted function has Laplace transform
A perturbation of amplitude applied for time interval (e.g., voltage for electrical circuits) is
In[2]:=
v[t_,V0_,a_,b_] := V0 (UnitStep[t-a]-UnitStep[t-b]);
vplt=Plot[v[t,1,1,2],{t,0,3},Axes->False,Frame->True,FrameLabel->{"t","v(t)"}];
Export["/home/student/courses/MATH528/vplt.png",vplt]
In[3]:=
![]() |
Model
In[28]:=
tmodel = R y[t] + 1/K Integrate[y[tau],{tau,0,t}] ==
v[t,V0,a,b]
In[29]:=
Laplace transform
In[29]:=
smodel = Simplify[LaplaceTransform[tmodel,t,s],a>0
&& b>0] /. LaplaceTransform[y[t], t, s]
-> Y[s]
In[30]:=
Solution in frequency space
In[32]:=
sol[s_]=Simplify[Y[s] /. Solve[smodel,Y[s]][[1,1]]]
In[33]:=
InputForm[sol[s]]
In[34]:=
Response function in time
In[34]:=
F[s_]=(K*V0)/(1 + K*R*s)
In[35]:=
f[t_]=InverseLaplaceTransform[F[s],s,t]
In[36]:=
Response to single rectangular wave from frequency shifting
In[42]:=
y[t_,V0_,R_,K_,a_,b_] = f[t-a] UnitStep[t-a] - f[t-b]
UnitStep[t-b]
In[43]:=
yi[t_,V0_,R_,K_,a_,b_]=InverseLaplaceTransform[sol[s],s,t]
In[44]:=
params = {V0->1,R->1,K->1,a->1,b->2};
solplt = Plot[{y[t,V0,R,K,a,b],yi[t,V0,R,K,a,b]} /.
params,{t,0,4},Axes->False,Frame->True,FrameLabel->{"t","v(t)"}];
Export["/home/student/courses/MATH528/solplt.png",solplt]
In[45]:=
![]() |