MATH528 Lesson07: Forced oscillations

The following model describes response of a system with inertia, dissipation, storage under excitation

my''+cy'+ky=r(t),

especially with r(t)=Fcos(ωt) (periodic forcing).

In[6]:=

rhs = m y”[t] + c y'[t] + k y[t]; r[t_] = F Cos[omega t];

hODE = rhs == 0;

hsol[t_,m_,c_,k_] = y[t] /. DSolve[hODE,y[t],t][[1,1]]

c1e12t(-c2-4kmm-cm)+c2e12t(c2-4kmm-cm)

In[2]:=

psol[t_] = a Cos[omega t] + b Sin[omega t]

acos(ωt)+bsin(ωt)

In[3]:=

uCoef = Simplify[Evaluate[rhs /. y->psol] - r[t]]

cos(ωt)(ak-amω2+bcω-F)+sin(ωt)(b(k-mω2)-acω)

In[4]:=

sys = {Coefficient[uCoef,Cos[omega t],1],Coefficient[uCoef,Sin[omega t],1]}=={0,0}

{ak-amω2+bcω-F,b(k-mω2)-acω}={0,0}

In[5]:=

yp[t_,m_,c_,k_] = psol[t] /. Solve[sys,{a,b}][[1]]

cFωsin(ωt)c2ω2+k2-2kmω2+m2ω4+F(k-mω2)cos(ωt)c2ω2+k2-2kmω2+m2ω4

In[6]:=