MATH528 Lesson08: Higher-order linear ODEs

Definition. The general solution of the homogeneous ODE

y(n)+pn-1(x)y(n-1)++p1(x)y'+p0(x)y=0, (1)

is y(x)=c1y1(x)++cnyn(x) with {y1(x),,yn(x)} linearly independent.

Definition. An initial value problem is defined by (1) and n initial conditions

y(x0)=K0,y'(x0)=K1,,y(n-1)(x0)=Kn-1. (2)

Theorem. If pi(x) are continuous on I=(a,b), and x0I, then the IVP (1-2) has an unique solution on I.

Theorem. {y1(x),,yn(x)} are linearly dependent iff x0 such that

W(y1,,yn)=| y1 y2 yn y1' y2' yn' y1(n-1) y2(n-1) yn(n-1) |=0

In[1]:=

Wronskian[{1,x,x^2,x^3},x]

12

In[2]:=

Wronskian[{Cos[x], Sin[x], x Cos[x], x Sin[x]},x]

4

In[3]:=