MATH528 Lesson11: Qualitative nonlinear ODE system analysis

Algorithm ODE system qualitative analysis

  1. For ODE 𝒚'=𝒇(𝒚), find roots 𝒚, 𝒇(𝒚)=𝟎.

  2. Taylor series expand 𝒇(𝒚)=𝒇(𝒚)+𝑨(𝒚-𝒚)+𝒪(||𝒚-𝒚||2)

  3. Determine type of critical point from eigenvalues of the Jacobian

    𝑨=𝑱(𝒇(𝒚))=𝒇𝒚(𝒚).

Free undampened pendulum

θ''+ksinθ=0,(k=g/l)
𝒚'=( θ' ω' )=𝒇(𝒚)=( ω -ksinθ )

Critical points are 𝒚j=( jπ 0 ). Near a critical point the linearization of the system gives

𝒚'=𝑨(𝒚-𝒚j),𝑨=𝒇𝒚(𝒚j)=( 0 1 -kcos(jπ) 0 )=( 0 1 (-1)j+1k 0 )

Eigenvalues of 𝑨: