
MATH528 Lesson12: ODE series solution. Special functions

Remark. The real numbers are a complete, ordered �eld (R;+;�)

Remark. Power series are simply an in�nite sequence of the operations de�ned in R
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Remark. Power series can also be interpreted as a sequence of scalar products

Sn(x)=a
Tb(x);aT =( a0 a1 ::: an ); b(x)= ( 1 x ::: xn )T

The power series method to solve ODEs onsist of:
1. Introducing a representation y(x)=

P
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2. Replacing the representation into the ODE of interest and identifying coe�cients of powers of x

Example. y 0= y, y(0)= y0, Try y= a0+ a1x+ ���+ anx
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Trigonometric functions from series solution

Example. y 00=¡y, Try y= a0+ a1x+ ���+ anx
n+ ���+

y 00=2 � 1 � a2+3 � 2 � a3x+ ���+(n+2) � (n+1) � an+2xn = ¡(a0+ a1x+ ���+ anx
n+ ���)= y)
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y(x) = a0 cos(x)+ a1 sin(x)

Remark. The equation Y 00 + Y = 0 results from separation of variables applied to r2u = 0, u(x; y; z) =
X(x)Y (y)Z(z) expressed in Cartesian coordinates (x; y; z).

Recall:

r = @x ex+ @y ey+ @zez

ru= gradu = @xuex+ @yu ey+ @zu ez=v= vxex+ vyey+ vzez

r�v=div v = @xvx+ @yvy+ @zvz
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Power series convergence

The radius of convergence can be determined from series coe�cients:

R¡1= lim
n!1

janj1/n R¡1= lim
n!1

��������an+1an
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if limits exist and R=/ 0.

Example. ex=1+x+ ���+ xn
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, R¡1= limn!1
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Example. 1

1¡x =1+x+x2+ ���+; R¡1=1)R=1, converges for jxj< 1

In general a series solution with R>0 exists for ODEs of form y 00+ p(x)y 0+ q(x)y=0 if p; q have power series
representations.



Laplacian in curvilinear coordinates

Remark. sin(x); cos(x) obtained from separation of variables applied to r2u=0 in Cartesian

Similarly useful functions are obtained through series solutions to the ODE obtained by separation of variables
of r2u=0 in other coordinate systems: spherical, cylindrical, ...

x= r cos � sin'; y= r sin � sin'; z= r cos '

Lr=1; L'= r; L�= r sin ' (Lame coe�cients)
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