MATH528 Lesson15: Laplace transform of derivatives, integrals, ODEs

Definition. The Laplace transform of f:[0,) is

F(s)=(f)(s)=0f(t)e-stdt,F=(f),

and f(t)=-1(F)(t), f=-1(F) is the inverse Laplace transform.

Theorem. (f')=s(f)-f(0), (f'')=s2(f)-sf(0)-f'(0),

(f(n))=sn(f)-j=0n-1sjf(n-1-j)(0)

Theorem.

(0tf(τ)dτ)=1sF(s),0tf(τ)dτ=-1(1sF(s))

Example.

-1(1s2+ω2)=sinωtω-1(1s(s2+ω2))=0tsinωτωdτ=1-cosωtω2

In[1]:=

InverseLaplaceTransform[1/s/(s^2+omega^2),s,t]

1-cos(ωt)ω2

In[2]:=