MATH528 Lesson16: Heaviside step function, Dirac delta function

Definition. The Heaviside (step) function u(t-a)is defined as

u(t-a)={ 0 ift<a 1 ift>a ..(a0),[u(t-a)]=e-ass

Definition. The impulse of force f(t) over time interval [a,a+k] is the integral

I=aa+kf(t)dt.

Consider k small such that f(t) is approximately constant and described by

fk(t-a)={ 1/k ata+k 0 otherwise .,Ik=aa+kfk(t)dt=1.

Note that fk(t-a)=1k[u(t-a)-u(t-a-k)] such that

Fk(s)=(fk)(s)=1k[e-ass-e-(a+k)ss],limk0Fk(s)=e-as=[δ(t-a)]

Definition. The (generalized) function limk0fk(t)=δ(t-a)=-1[e-as] is the Dirac delta function.

Properties:

0δ(t-a)dt=1 0g(t)δ(t-a)dt=g(a)