MATH528 Lesson19: Fourier series

The Euler formulas for periodic functions with period 2L, f(x)=f(x+2L) are

a0=12L-LLf(x)dx,
an=1L-LLf(x)cos(nπxL)dx,
bn=1L-LLf(x)sin(nπxL)dx.
f(x)=a0+n=1(ancos(nπxL)+bnsin(nπxL))

Even, functions, f(x)=f(-x) are represented by a Fourier cosine series

f(x)=a0+n=1ancos(nπxL)

Odd, functions, f(x)=-f(-x) are represented by a Fourier sine series

f(x)=n=1bnsin(nπxL)