MATH528 Lesson24: Wave equation in 3D, spherical harmonics

Express the 3D wave equation utt-c22u=0 (subscripts denote differentiation) in spherical coordinates

x=rsinϕcosθ,y=rsinϕsinθ,z=rcosϕ
1c2utt=1r2(r2ur)r+1r2sin2ϕuθθ+1r2sinϕ(sinϕuϕ)ϕ

Figure 1.

Seek time periodic solutions, and apply separation of variables u(t,r,θ,ϕ)=aeiωtR(r)Θ(θ)Φ(ϕ) to obtain

-ω2c2RΘΦ=R''ΘΦ+2rR'ΘΦ+1r2sin2ϕRΘ''Φ+1r2RΘΦ''+cosϕr2sinϕRΘΦ'
-Θ''Θ=r2sin2ϕR(R''+2rR'+ω2c2R)+sin2ϕ(Φ''Φ+cotϕΦ'Φ)=m2
r2R(R''+2rR'+ω2c2R)+(Φ''Φ+cotϕΦ'Φ-m2sin2ϕ)=0