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Introduction to 
Differential Equations
1.1	 Definitions and Terminology

1.2	 Initial-Value Problems

1.3	� Differential Equations as Mathematical Models

	 Chapter 1 in Review

The purpose of this short chapter is twofold: to introduce the basic terminology of differential 
equations and to briefly examine how differential equations arise in an attempt to describe or 
model physical phenomena in mathematical terms.

1CHAPTER
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1.1	 Definitions and Terminology

INTRODUCTION  The words differential and equation certainly suggest solving some kind of 
equation that contains derivatives. But before you start solving anything, you must learn some 
of the basic definitions and terminology of the subject.

  A Definition  The derivative dy/dx of a function y  f(x) is itself another function f9(x)  
found by an appropriate rule. For example, the function y 5 e 

0.1x 
2

 is differentiable on the interval  

(2q , q ), and its derivative is dy/dx 5 0.2xe 
0.1x 

2

. If we replace e 
0.1x 

2

 in the last equation by the 
symbol y, we obtain

	
dy
dx

5 0.2xy.� (1)

Now imagine that a friend of yours simply hands you the differential equation in (1), and that 
you have no idea how it was constructed. Your friend asks: “What is the function represented by 
the symbol y?” You are now face-to-face with one of the basic problems in a course in differential 
equations:

How do you solve such an equation for the unknown function y 5 f(x)?

The problem is loosely equivalent to the familiar reverse problem of differential calculus: Given 
a derivative, find an antiderivative.

Before proceeding any further, let us give a more precise definition of the concept of a dif-
ferential equation.

DEFINITION 1.1.1   Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to 
one or more independent variables, is said to be a differential equation (DE).

In order to talk about them, we will classify a differential equation by type, order, and 
linearity.

  Classification by Type  If a differential equation contains only ordinary derivatives of 
one or more functions with respect to a single independent variable it is said to be an ordinary 
differential equation (ODE). An equation involving only partial derivatives of one or more 
functions of two or more independent variables is called a partial differential equation (PDE). 
Our first example illustrates several of each type of differential equation.

EXAMPLE 1	 Types of Differential Equations

(a)	 The equations

	 an ODE can contain more
	 than one dependent variable
	 T	 T

	
dy
dx

1 6y 5 e 
2x, 

d  

2y
dx 

2 1
dy
dx

2 12y 5 0,  and 
dx
dt

1
dy
dt

5 3x 1 2y� (2)

are examples of ordinary differential equations.

(b)	 The equations

	
' 

2u

'x  

2 1
' 

2u

'y  

2 5 0, 
' 

2u

'x 
2 5

' 

2u

't 
2 2

'u

't
, 

'u
'y

5 2 

'v
'x

� (3)

are examples of partial differential equations. Notice in the third equation that there are two 
dependent variables and two independent variables in the PDE. This indicates that u and v 
must be functions of two or more independent variables.

	 1.1  Definitions and Terminology  |  3

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



  Notation  Throughout this text, ordinary derivatives will be written using either the Leibniz 
notation dy/dx, d 2y/dx 2, d 3y/dx 3, … , or the prime notation y9, y 0, y , … . Using the latter nota-
tion, the first two differential equations in (2) can be written a little more compactly as  
y9 1 6y 5 e2x and y 0 1 y9 2 12y 5 0, respectively. Actually, the prime notation is used to denote 
only the first three derivatives; the fourth derivative is written y(4) instead of y . In general, the 
nth derivative is d ny/dx n or y (n). Although less convenient to write and to typeset, the Leibniz 
notation has an advantage over the prime notation in that it clearly displays both the dependent  
and independent variables. For example, in the differential equation d 2x/dt 2 1 16x 5 0, it is im
mediately seen that the symbol x now represents a dependent variable, whereas the independent  
variable is t. You should also be aware that in physical sciences and engineering, Newton’s dot 
notation (derogatively referred to by some as the “flyspeck” notation) is sometimes used to 
denote derivatives with respect to time t. Thus the differential equation d 2s/dt 2 5 232 becomes 
s$ 5 232. Partial derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, the first and second equations in (3) can be written, in turn, as  
uxx 1 uyy 5 0 and uxx 5 utt 2 ut.

  Classification by Order  The order of a differential equation (ODE or PDE) is the 
order of the highest derivative in the equation.

EXAMPLE 2	 Order of a Differential Equation

The differential equations

	 highest order	 highest order
	 T	 T

	
d 

2y

dx 
2 1 5ady

dx
b

3

2 4y 5 e 
x,    2 

0  
4u

0x 
4 1

0  
2u

0t 
2 5 0

are examples of a second-order ordinary differential equation and a fourth-order partial dif-
ferential equation, respectively.

A first-order ordinary differential equation is sometimes written in the differential form

	 M(x, y) dx 1 N(x, y) dy 5 0.

EXAMPLE 3	 Differential Form of a First-Order ODE

If we assume that y is the dependent variable in a first-order ODE, then recall from calculus 
that the differential dy is defined to be dy 5 y rdx.

(a)	 By dividing by the differential dx an alternative form of the equation 

	 ( y 2 x) dx 1 4x dy 5 0 

is given by

	 y 2 x 1 4x 
dy
dx

5 0  or equivalently  4x 
dy
dx

1 y 5 x.

(b)	 By multiplying the differential equation

6xy  

dy

dx
1 x 

2 1 y 
2 5 0

by dx we see that the equation has the alternative differential form

	 (x 2 1 y 2) dx 1 6xy dy 5 0.

In symbols, we can express an nth-order ordinary differential equation in one dependent vari-
able by the general form

	 F(x, y, y9, … , y (n) ) 5 0,� (4)

4  |  CHAPTER 1  Introduction to Differential Equations
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where F is a real-valued function of n 1 2 variables: x, y, y9, … , y (n). For both practical and theo-
retical reasons, we shall also make the assumption hereafter that it is possible to solve an or-
dinary differential equation in the form (4) uniquely for the highest derivative y (n) in terms of 
the remaining n  1 variables. The differential equation

	
d 

 ny

dx 
n 5 f (x, y, y r, ... , y 

(n21) ) ,� (5)

where f is a real-valued continuous function, is referred to as the normal form of (4). Thus, when 
it suits our purposes, we shall use the normal forms

	
dy
dx

5 f (x, y)  and 
d 

 2y

dx 
2 5 f (x, y, y r)

to represent general first- and second-order ordinary differential equations.

EXAMPLE 4	 Normal Form of an ODE

(a)	 By solving for the derivative dy/dx the normal form of the first-order differential equation

	 4x  

dy
dx

1 y 5 x  is 
dy
dx

5
x 2 y

4x
.

(b)	 By solving for the derivative y 0 the normal form of the second-order differential  
equation

	 y  2 y 1 6y 5 0  is  y 0 5 y9 2 6y.

  Classification by Linearity  An nth-order ordinary differential equation (4) is said to  
be linear in the variable y if F is linear in y, y9, … , y (n). This means that an nth-order ODE is 
linear when (4) is an(x)y (n) 1 an21(x)y (n21) 1 c1 a1(x)y r 1 a0(x)y 2 g(x) 5 0 or

	 an(x) 
d 

 ny

dx 
 n 1 an21(x) 

d 
 n21y

dx  
n21 1 c1 a1(x) 

dy

dx
1 a0(x)y 5 g(x).� (6)

Two important special cases of (6) are linear first-order (n 5 1) and linear second-order  
(n 5 2) ODEs.

	 a1(x) 
dy
dx

1 a0(x)y 5 g(x)  and  a2(x) 
d 

 2y

dx 
2 1 a1(x) 

dy

dx
1 a0(x)y 5 g(x).� (7)

In the additive combination on the left-hand side of (6) we see that the characteristic two proper-
ties of a linear ODE are

•	 �The dependent variable y and all its derivatives y9, y 0, … , y (n) are of the first degree; that 
is, the power of each term involving y is 1.

•	 �The coefficients a0, a1, … , an of y, y9, … , y (n) depend at most on the independent 
variable x.

A nonlinear ordinary differential equation is simply one that is not linear. If the coefficients of 
y, y9, … , y (n) contain the dependent variable y or its derivatives or if powers of y, y9, … , y (n), such 
as (y9) 2, appear in the equation, then the DE is nonlinear. Also, nonlinear functions of the depen-
dent variable or its derivatives, such as sin y or e y9, cannot appear in a linear equation.

 EXAMPLE 5	 Linear and Nonlinear Differential Equations

(a)	 The equations

	 (y 2 x)  dx 1 4x  dy 5 0,  ys 2 2y r 1 y 5 0,  x 
3 

d 
3y

dx 
3 1 3x 

dy

dx
2 5y 5 e 

x

are, in turn, examples of linear first-, second-, and third-order ordinary differential equations. 
We have just demonstrated in part (a) of Example 3 that the first equation is linear in y by 
writing it in the alternative form 4x y9 1 y 5 x.

Remember these two  
characteristics of a  
linear ODE.
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(b)	 The equations

	 nonlinear term:	 nonlinear term:	 nonlinear term:
	 coefficient depends on y	 nonlinear function of y	 power not 1

	 T	 T	 T

	 (1 2 y)y r 1 2y 5 e 
x,  

d 
 2 y

dx 
2 1  sin y 5 0,  

d 
4 y

dx 
4 1 y 

2 5 0,

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations, 
respectively.

(c)	 By using the quadratic formula the nonlinear first-order differential equation 
( y r)2 1 2xy r 2 y 5 0 can be written as two nonlinear first-order equations in normal form

	 y r 5 2x 1 "x 
2 1 y and y r 5 2x 2 "x 

2 1 y.

  Solution  As stated before, one of our goals in this course is to solve—or find solutions 
of—differential equations. The concept of a solution of an ordinary differential equation is 
defined next.

DEFINITION 1.1.2   Solution of an ODE

Any function f, defined on an interval I and possessing at least n derivatives that are continuous 
on I, which when substituted into an nth-order ordinary differential equation reduces the 
equation to an identity, is said to be a solution of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a function f 
that possesses at least n derivatives and

	 F(x, f(x), f9(x), … , f (n)(x)) 5 0 for all x in I.

We say that f satisfies the differential equation on I. For our purposes, we shall also assume that 

a solution f is a real-valued function. In our initial discussion we have already seen that y 5 e 
0.1x 

2

 
is a solution of dy/dx 5 0.2xy on the interval (2q , q ).

Occasionally it will be convenient to denote a solution by the alternative symbol y(x).

  Interval of Definition  You can’t think solution of an ordinary differential equation 
without simultaneously thinking interval. The interval I in Definition 1.1.2 is variously called 
the interval of definition, the interval of validity, or the domain of the solution and can be an 
open interval (a, b), a closed interval [a, b], an infinite interval (a, q), and so on.

EXAMPLE 6	 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on the interval 
(2q , q ).

(a)	
dy

dx
5 xy 

1/2;  y 5 1
16x 

4	 (b) y 0 2 2y9 1 y 5 0;  y 5 xe x

SOLUTION  One way of verifying that the given function is a solution is to see, after substi-
tuting, whether each side of the equation is the same for every x in the interval (2q , q ).

(a)	 From	 left-hand side: 
dy
dx

5 4 # x 
3

16
5

x 
3

4

			   right-hand side:  xy 

1/2 5 x # a x 
4

16
b

1/2

5 x # x 
2

4
5

x 
3

4
,

we see that each side of the equation is the same for every real number x. Note that y 1/2 5 14x 2 is, 
by definition, the nonnegative square root of 1

16x 4.

6  |  CHAPTER 1  Introduction to Differential Equations
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(b)	 From the derivatives y9 5 xe x + e x and y 0 5 xe x 1 2e x we have for every real number x,

	 left-hand side:  y 0 2 2y 9 1 y 5 (xe x 1 2e x) 2 2(xe x 1 e x) 1 xe x 5 0

	 right-hand side:  0.

Note, too, that in Example 6 each differential equation possesses the constant solution y 5 0,  
defined on (2q , q ). A solution of a differential equation that is identically zero on an interval 
I is said to be a trivial solution.

  Solution Curve  The graph of a solution f of an ODE is called a solution curve. Since 
f is a differentiable function, it is continuous on its interval I of definition. Thus there may be a 
difference between the graph of the function f and the graph of the solution f. Put another way, 
the domain of the function f does not need to be the same as the interval I of definition (or 
domain) of the solution f.

EXAMPLE 7	 Function vs. Solution

(a)	 Considered simply as a function, the domain of y 5 1/x is the set of all real numbers x 
except 0. When we graph y 5 1/x, we plot points in the xy-plane corresponding to a judicious 
sampling of numbers taken from its domain. The rational function y 5 1/x is discontinuous 
at 0, and its graph, in a neighborhood of the origin, is given in FIGURE 1.1.1(a). The function 
y 5 1/x is not differentiable at x 5 0 since the y-axis (whose equation is x 5 0) is a vertical 
asymptote of the graph.

(b)	 Now y 5 1/x is also a solution of the linear first-order differential equation xy9 1 y 5 0 
(verify). But when we say y 5 1/x is a solution of this DE we mean it is a function defined on 
an interval I on which it is differentiable and satisfies the equation. In other words,  
y 5 1/x is a solution of the DE on any interval not containing 0, such as (23, 21), ( 12, 10),  
(2q , 0), or (0, q). Because the solution curves defined by y 5 1/x on the intervals (23, 21) 
and on (1

2 , 10) are simply segments or pieces of the solution curves defined by  
y 5 1/x on (2q , 0) and (0, q), respectively, it makes sense to take the interval I to be as large 
as possible. Thus we would take I to be either (2q , 0) or (0, q). The solution curve on the 
interval (0, q) is shown in Figure 1.1.1(b).

  Explicit and Implicit Solutions  You should be familiar with the terms explicit and 
implicit functions from your study of calculus. A solution in which the dependent variable is 
expressed solely in terms of the independent variable and constants is said to be an explicit solution. 
For our purposes, let us think of an explicit solution as an explicit formula y 5 f(x) that we can 
manipulate, evaluate, and differentiate using the standard rules. We have just seen in the last two 
examples that y 5 1

16   x 4, y 5 xe x, and y 5 1/x are, in turn, explicit solutions of dy/dx 5 xy 1/2,  
y  0 2 2y9 1 y 5 0, and xy9 1 y 5 0. Moreover, the trivial solution y 5 0 is an explicit solution 
of all three equations. We shall see when we get down to the business of actually solving some 
ordinary differential equations that methods of solution do not always lead directly to an explicit 
solution y 5 f(x). This is particularly true when attempting to solve nonlinear first-order dif-
ferential equations. Often we have to be content with a relation or expression G(x, y) 5 0 that 
defines a solution f implicitly.

DEFINITION 1.1.3   Implicit Solution of an ODE

A relation G(x, y) 5 0 is said to be an implicit solution of an ordinary differential equation (4) 
on an interval I provided there exists at least one function f that satisfies the relation as well 
as the differential equation on I.

It is beyond the scope of this course to investigate the conditions under which a relation  
G (x, y) 5 0 defines a differentiable function f. So we shall assume that if the formal implemen-
tation of a method of solution leads to a relation G (x, y) 5 0, then there exists at least one function 
f that satisfies both the relation (that is, G(x, f (x)) 5 0) and the differential equation on an 

y

x
1

1

y

x
1

1

(a) Function y = 1/x, x � 0

(b) Solution y = 1/x, (0, �)

FIGURE 1.1.1  Example 7 illustrates  
the difference between the function 
y 5 1/x and the solution y 5 1/x
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x

y

c > 0

c = 0

c < 0

FIGURE 1.1.3  Some solutions of DE 
in part (a) of Example 9

interval I. If the implicit solution G (x, y) 5 0 is fairly simple, we may be able to solve for y in 
terms of x and obtain one or more explicit solutions. See (iv) in the Remarks.

EXAMPLE 8	 Verification of an Implicit Solution

The relation x 2 1 y 2 5 25 is an implicit solution of the nonlinear differential equation

	
dy
dx

5 2
x
y� (8)

on the interval defined by 25  x  5. By implicit differentiation we obtain

	
d

dx
 x 

2 1
d

dx
 y 

2 5
d

dx
 25    or    2x 1 2y 

dy
dx

5 0.	 (9)

Solving the last equation in (9) for the symbol dy/dx gives (8). Moreover, solving x 2 1 y 2 5 25  

for y in terms of x yields y 5 6"25 2 x 
2. The two functions y 5 f1(x) 5 "25 2 x 

2 and 

y 5 f2(x) 5 2"25 2 x 
2 satisfy the relation (that is, x 2 1 f2

1 5 25 and x 2 1 f2
2 5 25) and are 

explicit solutions defined on the interval (25, 5). The solution curves given in FIGURE 1.1.2(b) 
and 1.1.2(c) are segments of the graph of the implicit solution in Figure 1.1.2(a).

(a) Implicit solution

5

–5

x

y

–5

5

x2 + y2 = 25
(b) Explicit solution

y1 = √25 – x2, –5 < x < 5

5
x

y

–5

5

(c) Explicit solution

y2 = –√25 – x2, –5 < x < 5

5

–5

x

y

–5

5

FIGURE 1.1.2  An implicit solution and two explicit solutions in Example 8

Any relation of the form x 2 1 y 2 2 c 5 0 formally satisfies (8) for any constant c. However, 
it is understood that the relation should always make sense in the real number system; thus, for 
example, we cannot say that x 2 1 y 2 1 25 5 0 is an implicit solution of the equation. Why not?

Because the distinction between an explicit solution and an implicit solution should be intui-
tively clear, we will not belabor the issue by always saying, “Here is an explicit (implicit) 
solution.”

  Families of Solutions  The study of differential equations is similar to that of integral 
calculus. When evaluating an antiderivative or indefinite integral in calculus, we use a single constant 
c of integration. Analogously, when solving a first-order differential equation F(x, y, y9) 5 0, we 
usually obtain a solution containing a single arbitrary constant or parameter c. A solution contain-
ing an arbitrary constant represents a set G(x, y, c) 5 0 of solutions called a one-parameter 
family of solutions. When solving an nth-order differential equation F(x, y, y9, … , y (n)) 5 0, we 
seek an n-parameter family of solutions G(x, y, c1, c2, … , cn) 5 0. This means that a single 
differential equation can possess an infinite number of solutions corresponding to the unlim-
ited number of choices for the parameter(s). A solution of a differential equation that is free 
of arbitrary parameters is called a particular solution.

EXAMPLE 9 	 Particular Solution

(a)	 For all values of c, the one-parameter family y 5 cx 2 x cos x is an explicit solution of 
the linear first-order differential equation

	 xy r 2 y 5 x 
2 sin x

on the interval (2q , q ). FIGURE 1.1.3 shows the graphs of some particular solutions in this 
family for various choices of c. The solution y 5 2x cos  x, the red curve in the figure, is a 
particular solution corresponding to c 5 0.
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(b)	 The two-parameter family y 5 c1e 
x 1 c2xe 

x is an explicit solution of the linear second-
order differential equation

	 y s 2 2y r 1 y 5 0

in part (b) of Example 6. FIGURE 1.1.4 shows seven of the “double infinity” of solutions in  
this family. The solution curves in red, green, and blue are the graphs of the particular solu-
tions y 5 5xe 

x (c1 5 0, c2 5 5), y 5 3e 
x (c1 5 3, c2 5 0), and y 5 5e 

x 2 2xe 
x  (c1 5 5, 

c2 5 22)  respectively.

In all the preceding examples, we have used x and y to denote the independent and dependent 
variables, respectively. But you should become accustomed to seeing and working with other 
symbols to denote these variables. For example, we could denote the independent variable by t 
and the dependent variable by x.

EXAMPLE 10 	 Using Different Symbols

The functions x 5 c1 cos 4t and x 5 c2 sin 4t, where c1 and c2 are arbitrary constants or 
parameters, are both solutions of the linear differential equation

	 x 0 1 16x 5 0.

For x 5 c1 cos 4t, the first two derivatives with respect to t are x9 5 24c1 sin 4t and 
x 0 5 216c1 cos 4t. Substituting x 0 and x then gives

	 x 0 1 16x 5 216c1 cos 4t 1 16(c1 cos 4t) 5 0.

In like manner, for x 5 c2 sin 4t we have x 0 5 216c2 sin 4t, and so

	 x 0 1 16x 5 216c2 sin 4t 1 16(c2 sin 4t) 5 0.

Finally, it is straightforward to verify that the linear combination of solutions for the two-
parameter family x 5 c1 cos 4t 1 c2 sin 4t is also a solution of the differential equation.

The next example shows that a solution of a differential equation can be a piecewise-defined 
function.

EXAMPLE 11 	 A Piecewise-Defined Solution

You should verify that the one-parameter family y 5 cx 4 is a one-parameter family of solutions 
of the linear differential equation xy9 2 4y 5 0 on the interval (2q , q ). See FIGURE 1.1.5(a). 
The piecewise-defined differentiable function

	 y 5 e2x 
4, x , 0

  x 
4, x $ 0

is a particular solution of the equation but cannot be obtained from the family y 5 cx 4 by a 
single choice of c; the solution is constructed from the family by choosing c 5 21 for x  0 
and c 5 1 for x  0. See FIGURE 1.1.5(b).

  Singular Solution  Sometimes an nth-order differential equation possesses a solution 
that is not a member of an n-parameter family of solutions of the equation—that is, a solution 
that cannot be obtained by specializing any of the parameters in the family of solutions. Such a 
solution is called a singular solution.*

EXAMPLE 12	 Singular Solution

We saw on pages 6 and 7 that the functions y 5 1
16x 

4 and y 5 0 are solutions of the differential 

equation dy>dx 5 xy 

1
2 on (2q , q ). In Section 2.2 we shall demonstrate, by actually solving 

it, that the differential equation dy>dx 5 xy 

1
2 possesses the one-parameter family of solutions  

(a)

x

y

c = 1

c = –1

c = 1
x ≥ 0

c = –1
x < 0

(b)

x

y

FIGURE 1.1.5  Some solutions of  
xy9 2 4y 5 0 in Example 11

*There is a bit more to the definition of a singular solution, but it is beyond the intended level of this text.

FIGURE 1.1.4  Some solutions of DE  
in part (b) of Example 9

y

x
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y 5 (1
4x 

2 1 c)2, c $ 0. When c 5 0 the resulting particular solution is y 5 1
16x 

4. But the 
trivial solution y 5 0 is a singular solution since it is not a member of the family y 5 (1

4x 
2 1 c)2;  

there is no way of assigning a value to the constant c to obtain y 5 0.

  Systems of Differential Equations  Up to this point we have been discussing single 
differential equations containing one unknown function. But often in theory, as well as in many 
applications, we must deal with systems of differential equations. A system of ordinary  
differential equations is two or more equations involving the derivatives of two or more unknown 
functions of a single independent variable. For example, if x and y denote dependent variables 
and t the independent variable, then a system of two first-order differential equations is given by

	  
dx
dt

5 f ( t, x, y)

	  
dy
dt

5 g( t, x, y) .�
(10)

A solution of a system such as (10) is a pair of differentiable functions x 5 f1(t), y 5 f2(t)  
defined on a common interval I that satisfy each equation of the system on this interval. See 
Problems 49 and 50 in Exercises 1.1.

REMARKS
(i) It might not be apparent whether a first-order ODE written in differential form M(x, y) dx 1  
N(x, y) dy 5 0 is linear or nonlinear because there is nothing in this form that tells us which 
symbol denotes the dependent variable. See Problems 11 and 12 in Exercises 1.1.
(ii) We will see in the chapters that follow that a solution of a differential equation may  
involve an integral-defined function. One way of defining a function F of a single variable x 
by means of a definite integral is

	 F(x) 5 #
x

a

g (t) dt.� (11)

If the integrand g in (11) is continuous on an interval [a, b] and a  x  b, then the derivative 
form of the Fundamental Theorem of Calculus states that F is differentiable on (a, b) and

	 F r(x) 5
d

dx#
x

a

g (t) dt 5 g (x).� (12)

The integral in (11) is often nonelementary, that is, an integral of a function g that does 
not have an elementary-function antiderivative. Elementary functions include the familiar 
functions studied in a typical precalculus course:

constant, polynomial, rational, exponential, logarithmic, trigonometric, and 
inverse trigonometric functions,

as well as rational powers of these functions, finite combinations of these functions using 
addition, subtraction, multiplication, division, and function compositions. For example, even 

though e 
2t 

2

, "1 1 t 
3, and cos t 2 are elementary functions, the integrals ee 

2t 
2 

dt,  e"1 1 t 
3 dt, 

and ecos t 
2 dt are nonelementary. See Problems 27–30 in Exercises 1.1.

(iii) Although the concept of a solution of a differential equation has been emphasized in 
this section, you should be aware that a DE does not necessarily have to possess a solution. 
See Problem 51 in Exercises 1.1. The question of whether a solution exists will be touched 
on in the next section.
(iv) A few last words about implicit solutions of differential equations are in order. In Example 8 

we were able to solve the relation x 2 1 y 2 5 25 for y in terms of x to get two explicit solutions,  

f1(x) 5 "25 2 x 
2 and f2 (x) 5 2"25 2 x 

2, of the differential equation (8). But don’t 
read too much into this one example. Unless it is easy, obvious, or important, or you are
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instructed to, there is usually no need to try to solve an implicit solution G(x, y) 5 0  
for y explicitly in terms of x. Also do not misinterpret the second sentence following  
Definition 1.1.3. An implicit solution G(x, y) 5 0 can define a perfectly good differentiable 
function f that is a solution of a DE, but yet we may not be able to solve G(x, y) 5 0 using 
analytical methods such as algebra. The solution curve of f may be a segment or piece of 
the graph of G(x, y) 5 0. See Problems 57 and 58 in Exercises 1.1.
(v) If every solution of an nth-order ODE F(x, y, y9, … , y (n)) 5 0 on an interval I can be ob-
tained from an n-parameter family G(x, y, c1, c2, … , cn) 5 0 by appropriate choices of the 
parameters ci, i 5 1, 2, … , n, we then say that the family is the general solution of the DE. 
In solving linear ODEs, we shall impose relatively simple restrictions on the coefficients of 
the equation; with these restrictions one can be assured that not only does a solution exist on 
an interval but also that a family of solutions yields all possible solutions. Nonlinear equations, 
with the exception of some first-order DEs, are usually difficult or even impossible to solve 
in terms of familiar elementary functions. Furthermore, if we happen to obtain a family of 
solutions for a nonlinear equation, it is not evident whether this family contains all solutions. 
On a practical level, then, the designation “general solution” is applied only to linear DEs. 
Don’t be concerned about this concept at this point but store the words general solution in the 
back of your mind—we will come back to this notion in Section 2.3 and again in Chapter 3.

In Problems 1–10, state the order of the given ordinary 
differential equation. Determine whether the equation is  
linear or nonlinear by matching it with (6).

	 1.	 (1 2 x)y 0 2 4xy9 1 5y 5 cos x

	 2.	 x 

d 
 3y

dx 
3 2 ady

dx
b

4

1 y 5 0

	 3.	 t 5y (4) 2 t 3y 0 1 6y 5 0

	 4.	
d 

 2u

dr 
 2 1

du

dr
1 u 5  cos (r 1 u)

	 5.	
d 2y

dx 
2 5 Å1 1 ady

dx
b

2

	 6.	
d 

 2R

dt 
 2 5 2

k

R 
2

	 7.	 (sin u)y  2 (cos u)y9 5 2

	 8.	 x$ 2 (1 2 1
3 x#  2 ) x# 1 x 5 0

	 9.	 sin ady

dx
b 5 y 1 x

	10.	
dx

dy
1 y 

3
 x 5  sin y

In Problems 11 and 12, determine whether the given 
first-order differential equation is linear in the indicated  
dependent variable by matching it with the first differential 
equation given in (7).

	11.	 ( y 2 2 1) dx 1 x dy 5 0; in y; in x

	12.	 u  dv 1 (v 1 uv 2 ue u) du 5 0; in v; in u

In Problems 13–16, verify that the indicated function is an  
explicit solution of the given differential equation. Assume  
an appropriate interval I of definition for each solution.

	13.	 2y9 1 y 5 0;  y 5 e 2x/2

	14.	
dy
dt

1 20y 5 24;  y 5 6
5 2 6

5 
 
e220t

	15.	 y 0 2 6y9 1 13y 5 0;  y 5 e 3x cos 2x

	16.	 y 0 1 y 5 tan x;  y 5 2(cos x) ln(sec x 1 tan x)

In Problems 17–20, verify that the indicated function y 5 f(x)  
is an explicit solution of the given first-order differential  
equation. Proceed as in Example 7, by considering f simply  
as a function, give its domain. Then by considering f as a 
solution of the differential equation, give at least one interval I 
of definition.

	17.	 ( y 2 x)y r 5 y 2 x 1 8;  y 5 x 1 4"x 1 2
	18.	 y9 5 25 1 y 2;  y 5 5 tan 5x

	19.	 y9 5 2xy 2;  y 5 1/(4 2 x 2)

	20.	 2y9 5 y 3 cos x;  y 5 (1 2 sin x) 21/2

In Problems 21 and 22, verify that the indicated expression  
is an implicit solution of the given first-order differential 
equation. Find at least one explicit solution y 5 f(x) in  
each case. Use a graphing utility to obtain the graph of an  
explicit solution. Give an interval I of definition of each  
solution f.

	21.	
dX
dt

5 (X 2 1)(1 2 2X  );  lna2X 2 1
X 2 1

b 5 t

	22.	 2xy dx 1 (x 2 2 y) dy 5 0;  22x 2y 1 y 2 5 1

1.1 Exercises  Answers to selected odd-numbered problems begin on page ANS-1.
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In Problems 23–26, verify that the indicated family of functions 
is a solution of the given differential equation. Assume an 
appropriate interval I of definition for each solution.

	23.	
dP
dt

5 P(1 2 P);  P 5
c1e 

t

1 1 c1e 
t

	24.	
dy

dx
1 4xy 5 8x 

3;  y 5 2x 
2 2 1 1 c1e 

22x 
2

	25.	
d 

 2y

dx 
 2 2 4 

dy

dx
1 4y 5 0;  y 5 c1e 

2x 1 c2xe 
2x

	26.	 x 
3 

d 
3y

dx 
3 1 2x 

2 
d 

2y

dx 
2 2 x 

dy

dx
1 y 5 12x 

2;

		  y 5 c1x
21 1 c2x 1 c3x ln x 1 4x 2

In Problems 27–30, use (12) to verify that the indicated  
function is a solution of the given differential equation. 
Assume an appropriate interval I of definition of each solution.

	27.	 x  

dy

dx
2 3xy 5 1; y 5 e 

3x#
x

1

e23t

t
 dt

	28.	 2x  

dy

dx
2 y 5 2x cos x; y 5 "x#

x

4

cos t

"t
 dt

	29.	 x 
2 

 

dy

dx
1 xy 5 10 sin x; y 5

5
x

1
10
x #

x

1

sin t

t
 dt

	30.	
dy

dx
1 2xy 5 1; y 5 e 

2x 
2

1 e2x 
2

#
x

0
e 

t 
2

dt

	31.	 Verify that the piecewise-defined function

	 y 5 e2x 
2, x , 0

x 
2, x $ 0

		  is a solution of the differential equation xy9 2 2y 5 0 on 
the interval (2q , q ).

	32.	 In Example 8 we saw that y 5 f1(x) 5 "25 2 x 2 and 

y 5 f2(x) 5 2"25 2 x 2 are solutions of dy/dx 5 2x/y  
on the interval (25, 5). Explain why the piecewise-defined 
function

	 y 5 e "25 2 x 2, 25 , x , 0
2"25 2 x 2, 0 # x , 5

		  is not a solution of the differential equation on the interval 
(25, 5).

In Problems 33–36, find values of m so that the function y 5 e mx 
is a solution of the given differential equation.

	33.	 y9 1 2y 5 0	 34.	 3y9 5 4y

	35.	 y 0 2 5y9 1 6y 5 0	 36.	 2y 0 1 9y9 2 5y 5 0

In Problems 37–40, find values of m so that the function 
y 5 x m is a solution of the given differential equation.

	37.	 xy 0 1 2y9 5 0	 38.	 4x2y 0 1 y 5 0

	39.	 x2y 0 2 7xy9 1 15y 5 0	 40.	 x2y  2 3xy 0 1 3y9 5 0

In Problems 41–44, use the concept that y 5 c, 2q   x  q,  
is a constant function if and only if y9 5 0 to determine 
whether the given differential equation possesses constant  
solutions.

	41.	 3xy9 1 5y 5 10	 42.	 y9 5 y 2 1 2y 2 3

	43.	 ( y 2 1)y9 5 1	 44.	 y0 1 4y9 1 6y 5 10

In Problems 45–48, verify that the one-parameter family is a 
solution of the given differential equation. Find at least one 
singular solution of the DE.

	45.	 y 5 (x 1 c1)
2; ady

dx
b

2

5 4y

	46.	 y 5 3 sin (x 1 c1); a
dy

dx
b

2

5 9 2 y 
2

	47.	 x 2 "16 2 y 
2 5 c1; y 

dy

dx
1 "16 2 y 

2 5 0

	48.	 y 5 x 2 (x 2 c1)
2; ady

dx
b

2

2 2
dy

dx
1 4y 5 4x 2 1

In Problems 49 and 50, verify that the indicated pair of  
functions is a solution of the given system of differential  
equations on the interval (2q , q ).

	49.	
dx
dt

5 x 1 3y	 50.	
d 

2x

dt 
2 5 4y 1 e 

t

		
dy
dt

5 5x 1 3y;		
d 

2y

dt 
2 5 4x 2 e 

t;

		  x 5 e 
22t 1 3e 

6t,		  x 5  cos 2t 1 sin 2t 1 1
5e 

t,

		  y 5 2e 
22t 1 5e 

6t		  y 5 2cos 2t 2 sin 2t 2 1
5e 

t

Discussion Problems

	51.	 Make up a differential equation that does not possess any 
real solutions.

	52.	 Make up a differential equation that you feel confident 
possesses only the trivial solution y 5 0. Explain your 
reasoning.

	53.	 What function do you know from calculus is such that its 
first derivative is itself? Its first derivative is a constant mul-
tiple k of itself? Write each answer in the form of a first-
order differential equation with a solution.

	54.	 What function (or functions) do you know from calculus is 
such that its second derivative is itself? Its second derivative 
is the negative of itself? Write each answer in the form of 
a second-order differential equation with a solution.

	55.	 Given that y 5 sin x is an explicit solution of the first-order 
differential equation dy/dx 5 "1 2 y 

2. Find an interval 
I of definition. [Hint: I is not the interval (2q , q ).]

	56.	 Discuss why it makes intuitive sense to presume that the 
linear differential equation y 0 1 2y9 1 4y 5 5 sin t has a 
solution of the form y 5 A sin t 1 B cos t, where A and B are 
constants. Then find specific constants A and B so 
that y 5 A sin t 1 B cos t is a particular solution of the DE.
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In Problems 57 and 58, the given figure represents the graph 
of an implicit solution G(x, y) 5 0 of a differential equation 
dy/dx 5 f (x, y). In each case the relation G(x, y) 5 0 implicitly 
defines several solutions of the DE. Carefully reproduce each 
figure on a piece of paper. Use different colored pencils to 
mark off segments, or pieces, on each graph that correspond to 
graphs of solutions. Keep in mind that a solution f must be a 
function and differentiable. Use the solution curve to estimate 
the interval I of definition of each solution f.

	57.	

FIGURE 1.1.6  Graph for 
Problem 57
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  58.  

FIGURE 1.1.7  Graph for 
Problem 58
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	59.	 The graphs of the members of the one-parameter family  
x 3 1 y 3 5 3cxy are called folia of Descartes after the  
French mathematician and inventor of analytic geometry, 
René Descartes (1596–1650). Verify that this family is an 
implicit solution of the first-order differential equation.

	
dy

dx
5

y( y 
3 2 2x 

3)

x(2y 
3 2 x 

3)
.

	60.	 The graph in FIGURE 1.1.7 is the member of the family of 
folia in Problem 59 corresponding to c 5 1. Discuss: How 
can the DE in Problem 59 help in finding points on the graph 
of x 3 1 y 3 5 3xy where the tangent line is vertical? How 
does knowing where a tangent line is vertical help in deter-
mining an interval I of definition of a solution f of the DE? 
Carry out your ideas and compare with your estimates of 
the intervals in Problem 58.

	61.	 In Example 8, the largest interval I over which the explicit 
solutions y 5 f1(x) and y 5 f2(x) are defined is the open 
interval (25, 5). Why can’t the interval I of definition be 
the closed interval [25, 5]?

	62.	 In Problem 23, a one-parameter family of solutions of the 
DE P9 5 P(1 2 P) is given. Does any solution curve pass 
through the point (0, 3)? Through the point (0, 1)?

	63.	 Discuss, and illustrate with examples, how to solve  
differential equations of the forms dy/dx 5 f (x) and  
d 2y/dx2 5 f (x).

	64.	 The differential equation x(y9)2 2 4y9 2 12x 3 5 0 has the 
form given in (4). Determine whether the equation can be 
put into the normal form dy/dx 5 f (x, y).

	65.	 The normal form (5) of an nth-order differential equation 
is equivalent to (4) whenever both forms have exactly the 
same solutions. Make up a first-order differential equation 
for which F(x, y, y9) 5 0 is not equivalent to the normal 
form dy/dx 5 f (x, y).

	66.	 Find a linear second-order differential equation F(x, y, y9, y 0 ) 5  
0 for which y 5 c1x 1 c2x 2 is a two-parameter family of  
solutions. Make sure that your equation is free of the arbitrary 
parameters c1 and c2.

Qualitative information about a solution y 5 f(x) of a 
differential equation can often be obtained from the equation 
itself. Before working Problems 67–70, recall the geometric 
significance of the derivatives dy/dx and d 2y/dx 2.

	67.	 Consider the differential equation dy/dx 5 e2x 
2

.
(a)	 Explain why a solution of the DE must be an increasing 

function on any interval of the x-axis.
(b)	 What are lim

xS 2q

dy/dx and lim
xSq

dy/dx? What does this  

suggest about a solution curve as x S q?
(c)	 Determine an interval over which a solution curve is 

concave down and an interval over which the curve  
is concave up.

(d)	 Sketch the graph of a solution y 5 f(x) of the differen-
tial equation whose shape is suggested by parts (a)–(c).

	68.	 Consider the differential equation dy/dx 5 5 2 y.
(a)	 Either by inspection, or by the method suggested in 

Problems 41–44, find a constant solution of the DE.
(b)	 Using only the differential equation, find intervals on 

the y-axis on which a nonconstant solution y 5 f(x) is 
increasing. Find intervals on the y-axis on which  
y 5 f(x) is decreasing.

	69.	 Consider the differential equation dy/dx 5 y (a 2 by), where 
a and b are positive constants.
(a)	 Either by inspection, or by the method suggested  

in Problems 41–44, find two constant solutions of 
the DE.

(b)	 Using only the differential equation, find intervals on 
the y-axis on which a nonconstant solution y 5 f(x) is 
increasing. On which y 5 f(x) is decreasing.

(c)	 Using only the differential equation, explain why  
y 5 a/2b is the y-coordinate of a point of inflection of 
the graph of a nonconstant solution y 5 f(x).

(d)	 On the same coordinate axes, sketch the graphs of the 
two constant solutions found in part (a). These constant 
solutions partition the xy-plane into three regions. In 
each region, sketch the graph of a nonconstant solution 
y 5 f(x) whose shape is suggested by the results in 
parts (b) and (c).

	70.	 Consider the differential equation y9 5 y 2 1 4.

(a)	 Explain why there exist no constant solutions of the 
DE.

(b)	 Describe the graph of a solution y 5 f(x). For example, 
can a solution curve have any relative extrema?

(c)	 Explain why y 5 0 is the y-coordinate of a point of 
inflection of a solution curve.

(d)	 Sketch the graph of a solution y 5 f(x) of the dif-
ferential equation whose shape is suggested by  
parts (a)–(c).

	 1.1  Definitions and Terminology  |  13

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



Computer Lab Assignments
In Problems 71 and 72, use a CAS to compute all derivatives 
and to carry out the simplifications needed to verify that the  
indicated function is a particular solution of the given  
differential equation.

	71.	 y (4) 2 20y  1 158y 0 2 580y9 1 841y 5 0;

		  y 5 xe 5x cos 2x

	72.	 x 3y  1 2x 2y 0 1 20xy9 2 78y 5 0;

		  y 5 20 
 cos (5 ln x)

x 2 3 
 sin (5 ln x)

x

1.2	 Initial-Value Problems

INTRODUCTION  We are often interested in problems in which we seek a solution y(x) of a 
differential equation so that y(x) satisfies prescribed side conditions—that is, conditions that are 
imposed on the unknown y(x) or on its derivatives. In this section we examine one such problem 
called an initial-value problem.

  Initial-Value Problem  On some interval I containing x0, the problem

	 Solve:	
d 

n
 y

dx 
n 5 f (x, y, y r, c , y(n21))

� (1)

	 Subject to:  y(x0 ) 5 y0, y r (x0 ) 5 y1, c , y(n21) (x0 ) 5 yn21,

where y0, y1, … , yn21 are arbitrarily specified real constants, is called an initial-value problem (IVP). 
The values of y(x) and its first n21 derivatives at a single point x0: y(x0) 5 y0, y9(x0) 5 y1, … , 
y (n21)(x0) 5 yn21, are called initial conditions (IC).

  First- and Second-Order IVPs  The problem given in (1) is also called an nth-order 
initial-value problem. For example,

	 Solve:	
dy
dx

5 f (x, y)

	 Subject to:	 y(x0 ) 5 y0�

(2)

and	 Solve:	
d 

 2y

dx 
2 5 f (x, y, y r )

	 Subject to:	 y(x0 ) 5 y0, y r (x0 ) 5 y1�

(3)

are first- and second-order initial-value problems, respectively. These two problems are easy 
to interpret in geometric terms. For (2) we are seeking a solution of the differential equation on 
an interval I containing x0 so that a solution curve passes through the prescribed point (x0, y0). 
See FIGURE 1.2.1. For (3) we want to find a solution of the differential equation whose graph not 
only passes through (x0, y0) but passes through so that the slope of the curve at this point is y1. 
See FIGURE 1.2.2. The term initial condition derives from physical systems where the independent 
variable is time t and where y(t0) 5 y0 and y9(t0) 5 y1 represent, respectively, the position and 
velocity of an object at some beginning, or initial, time t0.

Solving an nth-order initial-value problem frequently entails using an n-parameter family of 
solutions of the given differential equation to find n specialized constants so that the resulting 
particular solution of the equation also “fits”—that is, satisfies—the n initial conditions.

EXAMPLE 1	 First-Order IVPs

(a)	 It is readily verified that y 5 ce x is a one-parameter family of solutions of the simple 
first-order equation y9 5 y on the interval (2q , q ). If we specify an initial condition, say,  
y(0) 5 3, then substituting x 5 0, y 5 3 in the family determines the constant 3 5 ce0 5 c. 
Thus the function y 5 3e x is a solution of the initial-value problem

	 y9 5 y,  y(0) 5 3.

y

x

solutions of the DE

I

(x0, y0)

FIGURE 1.2.1  First-order IVP

y
solutions of the DE

I
x

m = y1

(x0, y0)

FIGURE 1.2.2  Second-order IVP
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(b)	 Now if we demand that a solution of the differential equation pass through the point  
(1, 22) rather than (0, 3), then y(1) 5 22 will yield 22 5 ce or c 5 22e21. The function 
y 5 22e x21 is a solution of the initial-value problem

	 y9 5 y,  y(1) 5 22.

The graphs of these two solutions are shown in blue in FIGURE 1.2.3.

The next example illustrates another first-order initial-value problem. In this example, notice 
how the interval I of definition of the solution y(x) depends on the initial condition y(x0) 5 y0.

EXAMPLE 2	 Interval I of Definition of a Solution

In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family of  
solutions of the first-order differential equation y9 1 2xy 2 5 0 is y 5 1/(x 2 1 c). If we impose 
the initial condition y(0) 5 21, then substituting x 5 0 and y 5 21 into the family of  
solutions gives 21 5 1/c or c 5 21. Thus, y 5 1/(x 2 2 1). We now emphasize the following 
three distinctions.

•	 �Considered as a function, the domain of y 5 1/(x 2 2 1) is the set of real numbers x for 
which y(x) is defined; this is the set of all real numbers except x 5 21 and  
x 5 1. See FIGURE 1.2.4(a).

•	 �Considered as a solution of the differential equation y9 1 2xy 2 5 0, the interval I  
of definition of y 5 1/(x 2 2 1) could be taken to be any interval over which y(x) is  
defined and differentiable. As can be seen in Figure 1.2.4(a), the largest intervals on which 
y 5 1/(x 2 2 1) is a solution are (2q , 21), (21, 1), and (1, q ).

•	 �Considered as a solution of the initial-value problem y9 1 2xy 2 5 0, y(0) 5 21, the interval 
I of definition of y 5 1/(x 2 2 1) could be taken to be any interval over which y(x) is defined, 
differentiable, and contains the initial point x 5 0; the largest interval for which this is true 
is (–1, 1). See Figure 1.2.4(b).

See Problems 3–6 in Exercises 1.2 for a continuation of Example 2.

EXAMPLE 3	 Second-Order IVP

In Example 10 of Section 1.1 we saw that x 5 c1 cos 4t 1 c2 sin 4t is a two-parameter family 
of solutions of x 0 1 16x 5 0. Find a solution of the initial-value problem

	 xs 1 16x 5 0,  x(p/2) 5 22,  x9(p/2) 5 1.� (4)

SOLUTION    We first apply x(p/2) 5 22 to the given family of solutions: c1 cos 2p 1 c2 sin 2p 5 
22. Since cos 2p 5 1 and sin 2p 5 0, we find that c1 5 22. We next apply x9(p/2) 5 1  
to the one-parameter family x(t) 5 22 cos 4t 1 c2 sin 4t. Differentiating and then setting  
t 5 p/2 and x9 5 1 gives 8 sin 2p 1 4c2 cos 2p 5 1, from which we see that c2 5 1

4 . Hence 
x 5 22 cos 4t 1 1

4 sin 4t is a solution of (4).

  Existence and Uniqueness  Two fundamental questions arise in considering an initial-
value problem:

Does a solution of the problem exist? If a solution exists, is it unique?

For a first-order initial-value problem such as (2), we ask:

Existence
	 5	� Does the differential equation dy/dx 5 f (x, y) possess solutions? 

Do any of the solution curves pass through the point (x0, y0)?

Uniqueness	 5	� When can we be certain that there is precisely one solution curve passing 
through the point (x0, y0)?

Note that in Examples 1 and 3, the phrase “a solution” is used rather than “the solution” of the 
problem. The indefinite article “a” is used deliberately to suggest the possibility that other solu-
tions may exist. At this point it has not been demonstrated that there is a single solution of each 
problem. The next example illustrates an initial-value problem with two solutions.

x

y

(1, –2)

(0, 3)

FIGURE 1.2.3  Solutions of IVPs in 
Example 1

FIGURE 1.2.4  Graphs of function  
and solution of IVP in Example 2

y

x
–1 1

y

x
–1 1

(a) Function defined for all x
     except x = ±1

(b) Solution defined on interval 
      containing x = 0

(0, –1)
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EXAMPLE 4	 An IVP Can Have Several Solutions

Each of the functions y 5 0 and y 5 1
16 x 

4 satisfies the differential equation dy/dx 5 xy 1/2 and 
the initial condition y(0) 5 0, and so the initial-value problem dy/dx 5 xy 1/2, y(0) 5 0, has at 
least two solutions. As illustrated in FIGURE 1.2.5, the graphs of both functions pass through 
the same point (0, 0).

Within the safe confines of a formal course in differential equations one can be fairly con-
fident that most differential equations will have solutions and that solutions of initial-value 
problems will probably be unique. Real life, however, is not so idyllic. Thus it is desirable to 
know in advance of trying to solve an initial-value problem whether a solution exists and, when 
it does, whether it is the only solution of the problem. Since we are going to consider first-
order differential equations in the next two chapters, we state here without proof a straight-
forward theorem that gives conditions that are sufficient to guarantee the existence and 
uniqueness of a solution of a first-order initial-value problem of the form given in (2). We 
shall wait until Chapter 3 to address the question of existence and uniqueness of a second-order 
initial-value problem.

THEOREM 1.2.1	 Existence of a Unique Solution

Let R be a rectangular region in the xy-plane defined by a # x # b, c # y # d, that contains 
the point (x0, y0) in its interior. If f (x, y) and f/y are continuous on R, then there exists some 
interval I0: (x0 2 h, x0 1 h), h  0, contained in [a, b], and a unique function y(x) defined on 
I0 that is a solution of the initial-value problem (2).

The foregoing result is one of the most popular existence and uniqueness theorems for first-
order differential equations, because the criteria of continuity of f (x, y) and f/y are relatively 
easy to check. The geometry of Theorem 1.2.1 is illustrated in FIGURE 1.2.6.

EXAMPLE 5	 Example 4 Revisited

We saw in Example 4 that the differential equation dy/dx 5 xy 1/2 possesses at least two solu-
tions whose graphs pass through (0, 0). Inspection of the functions

	 f (x, y) 5 xy1/2  and 
'f
'y

5
x

2y1/2

shows that they are continuous in the upper half-plane defined by y  0. Hence Theorem 1.2.1 
enables us to conclude that through any point (x0, y0), y0  0, in the upper half-plane there 
is some interval centered at x0 on which the given differential equation has a unique 
solution. Thus, for example, even without solving it we know that there exists some 
interval centered at 2 on which the initial-value problem dy/dx 5 xy 1/2, y(2) 5 1, has a 
unique solution.

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the initial-value 
problems y9 5 y, y(0) 5 3, and y9 5 y, y(1) 5 22, other than y 5 3e x and y 5 22e x–1, respec-
tively. This follows from the fact that f (x, y) 5 y and f/y 5 1 are continuous throughout the 
entire xy-plane. It can be further shown that the interval I on which each solution is defined 
is (2q , q ).

  Interval of Existence/Uniqueness  Suppose y(x) represents a solution of the 
initial-value problem (2). The following three sets on the real x-axis may not be the same: 
the domain of the function y(x), the interval I over which the solution y(x) is defined or exists, 
and the interval I0 of existence and uniqueness. In Example 7 of Section 1.1 we illustrated 
the difference between the domain of a function and the interval I of definition. Now suppose  
(x0, y0) is a point in the interior of the rectangular region R in Theorem 1.2.1. It turns out that the 
continuity of the function f (x, y) on R by itself is sufficient to guarantee the existence of at least 
one solution of dy/dx 5 f (x, y), y(x0) = y0, defined on some interval I. The interval I of definition 
for this initial-value problem is usually taken to be the largest interval containing x0 over which 

FIGURE 1.2.5  Two solutions of the 
same IVP in Example 4

y

x
(0, 0)

1

y = x4/16

y = 0

FIGURE 1.2.6  Rectangular region R

x

y

d

c

a b

R

(x0, y0)

I0
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the solution y(x) is defined and differentiable. The interval I depends on both f (x, y) and the 
initial condition y(x0) 5 y0. See Problems 31–34 in Exercises 1.2. The extra condition of continu-
ity of the first partial derivative f/y on R enables us to say that not only does a solution exist 
on some interval I0 containing x0, but it also is the only solution satisfying y(x0) 5 y0. However, 
Theorem 1.2.1 does not give any indication of the sizes of the intervals I and I0; the interval I of 
definition need not be as wide as the region R, and the interval I0 of existence and uniqueness 
may not be as large as I. The number h  0 that defines the interval I0: (x0 2 h, x0 1 h), could 
be very small, and so it is best to think that the solution y(x) is unique in a local sense, that is, a 
solution defined near the point (x0, y0). See Problem 50 in Exercises 1.2.

REMARKS
(i) The conditions in Theorem 1.2.1 are sufficient but not necessary. When f (x, y) and f/y 
are continuous on a rectangular region R, it must always follow that a solution of (2) exists 
and is unique whenever (x0, y0) is a point interior to R. However, if the conditions stated  
in the hypotheses of Theorem 1.2.1 do not hold, then anything could happen: Problem (2)  
may still have a solution and this solution may be unique, or (2) may have several solutions, 
or it may have no solution at all. A rereading of Example 4 reveals that the hypotheses of 
Theorem 1.2.1 do not hold on the line y 5 0 for the differential equation dy/dx 5 xy 1/2, and 
so it is not surprising, as we saw in Example 4 of this section, that there are two solutions 
defined on a common interval (2h, h) satisfying y(0) 5 0. On the other hand, the hypotheses 
of Theorem 1.2.1 do not hold on the line y 5 1 for the differential equation dy/dx 5 | y 2 1|. 
Nevertheless, it can be proved that the solution of the initial-value problem dy/dx 5 | y 2 1|, 
y(0) 5 1, is unique. Can you guess this solution?
(ii) You are encouraged to read, think about, work, and then keep in mind Problem 49 in 
Exercises 1.2.

In Problems 1 and 2, y 5 1/(1 1 c1e – x) is a one-parameter 
family of solutions of the first-order DE y9 5 y 2 y 2. Find a 
solution of the first-order IVP consisting of this differential 
equation and the given initial condition.

	 1.	 y(0) 5 21
3 	 2.	 y(21) 5 2

In Problems 3–6, y 5 1/(x 2 1 c) is a one-parameter family of 
solutions of the first-order DE y9 1 2xy 2 5 0. Find a solution 
of the first-order IVP consisting of this differential equation 
and the given initial condition. Give the largest interval I over 
which the solution is defined.

	 3.	 y(2) 5 1
3 	 4.	 y(22) 5 1

2

	 5.	 y(0) 5 1	 6.	 y ( 1
2 ) 5 24

In Problems 7–10, x 5 c1 cos t 1 c2 sin t is a two-parameter 
family of solutions of the second-order DE x 0 1 x 5 0. Find a 
solution of the second-order IVP consisting of this differential 
equation and the given initial conditions.

	 7.	 x(0) 5 21,  x9(0) 5 8

	 8.	 x(p/2) 5 0,  x9(p/2) 5 1

	 9.	 x(p/6) 5 12,  x9(p/6) 5 0

	10.	 x(p/4) 5 !2,  x9(p/4) 5 2!2

In Problems 11–14, y 5 c1e x 1 c2e – x is a two-parameter  
family of solutions of the second-order DE y 0 2 y 5 0.  

Find a solution of the second-order IVP consisting of this  
differential equation and the given initial conditions.

	11.	 y(0) 5 1,  y9(0) 5 2	 12.	 y(1) 5 0,  y9(1) 5 e
	13.	 y(21) 5 5,  y9(21) 5 25	 14.	 y(0) 5 0,  y9(0) 5 0

In Problems 15 and 16, determine by inspection at least two  
solutions of the given first-order IVP.

	15.	 y9 5 3y 2/3,  y(0) 5 0	 16.	 xy9 5 2y,  y(0) 5 0

In Problems 17–24, determine a region of the xy-plane  
for which the given differential equation would have a unique 
solution whose graph passes through a point (x0, y0) in the  
region.

	17.	
dy
dx

5 y 2/3	 18.	
dy

dx
5 "xy

	19.	 x 
dy
dx

5 y	 20.	
dy
dx

2 y 5 x

	21.	 (4 2 y 
2 )y r 5 x 

2	 22.	 (1 1 y 
3 )y r 5 x 

2

	23.	 (x 
2 1 y 

2 )y r 5 y 
2	 24.	 (y 2 x)y r 5 y 1 x

In Problems 25–28, determine whether Theorem 1.2.1 guaran-
tees that the differential equation y r 5 "y 

2 2 9 possesses a 
unique solution through the given point.

	25.	 (1, 4)	 26.	 (5, 3)

	27.	 (2, 23)	 28.	 (21, 1)

1.2 Exercises	 Answers to selected odd-numbered problems begin on page ANS-1.
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	29.	 (a)	 �By inspection, find a one-parameter family of solutions 
of the differential equation xy9 5 y. Verify that each 
member of the family is a solution of the initial-value 
problem xy9 5 y, y(0) 5 0.

(b)	 Explain part (a) by determining a region R in the  
xy-plane for which the differential equation xy9 5 y  
would have a unique solution through a point (x0, y0) in R.

(c)	 Verify that the piecewise-defined function

	 y 5 e0, x , 0
x, x $ 0

	 satisfies the condition y(0) 5 0. Determine whether 
this function is also a solution of the initial-value prob-
lem in part (a).

	30.	 (a)	� Verify that y 5 tan (x 1 c) is a one-parameter family 
of solutions of the differential equation y9 5 1 1 y 2.

(b)	 Since f (x, y) 5 1 1 y 2 and f/y 5 2y are continuous 
everywhere, the region R in Theorem 1.2.1 can be taken 
to be the entire xy-plane. Use the family of solutions 
in part (a) to find an explicit solution of the first-order 
initial-value problem y9 5 1 1 y 2, y(0) 5 0. Even 
though x0 5 0 is in the interval (22, 2), explain why 
the solution is not defined on this interval.

(c)	 Determine the largest interval I of definition for the 
solution of the initial-value problem in part (b).

	31.	 (a)	 �Verify that y 5 –1/(x 1 c) is a one-parameter family 
of solutions of the differential equation y9 5 y 2.

(b)	 Since f (x, y) 5 y 2 and f/y 5 2y are continuous  
everywhere, the region R in Theorem 1.2.1 can be  
taken to be the entire xy-plane. Find a solution from 
the family in part (a) that satisfies y(0) 5 1. Find a 
solution from the family in part (a) that satisfies  
y(0) 5 21. Determine the largest interval I of definition 
for the solution of each initial-value problem.

	32.	 (a)	 �Find a solution from the family in part (a) of 
Problem 31 that satisfies y9 5 y 2, y(0) 5 y0, where  
y0  0. Explain why the largest interval I of definition 
for this solution is either (2q , 1/y0) or (1/y0, q ).

(b)	 Determine the largest interval I of definition for the 
solution of the first-order initial-value problem  
y9 5 y 2, y(0) 5 0.

	33.	 (a)	 �Verify that 3x 2 2 y 2 5 c is a one-parameter family of 
solutions of the differential equation y dy/dx 5 3x.

(b)	 By hand, sketch the graph of the implicit solution  
3x 2 2 y 2 5 3. Find all explicit solutions y 5 f(x) of 
the DE in part (a) defined by this relation. Give the 
interval I of definition of each explicit solution.

(c)	 The point (22, 3) is on the graph of 3x 2 2 y 2 5 3, but 
which of the explicit solutions in part (b) satisfies  
y(22) 5 3?

	34.	 (a)	 �Use the family of solutions in part (a) of Problem 33 
to find an implicit solution of the initial-value problem 
y  dy/dx 5 3x, y(2) 5 24. Then, by hand, sketch the 
graph of the explicit solution of this problem and give 
its interval I of definition.

(b)	 Are there any explicit solutions of y dy/dx 5 3x that 
pass through the origin?

In Problems 35–38, the graph of a member of a family of  
solutions of a second-order differential equation  
d 2y/dx 2 5 f (x, y, y9) is given. Match the solution curve  
with at least one pair of the following initial conditions.

(a)	 y(1) 5 1, y9(1) 5 –2	 (b)	 y(21) 5 0, y9(21) 5 24

(c)	 y(1) 5 1, y9(1) 5 2	 (d)	 y(0) 5 21, y9(0) 5 2

(e)	 y(0) 5 21, y9(0) 5 0	 (f )	 y(0) 5 24, y9(0) 5 –2

	35.	

x

y

5

5

–5

FIGURE 1.2.7  Graph for 
Problem 35

  36. 

FIGURE 1.2.8  Graph for 
Problem 36

x

y

5

5

–5

	37.	

FIGURE 1.2.9  Graph for 
Problem 37

x

y

5

5

–5

  38. 

FIGURE 1.2.10  Graph for 
Problem 38

x

y

5

5

–5

In Problems 39–44, y 5 c1 cos 3x 1 c2 sin 3x is a two-param-
eter family of solutions of the second-order DE y 0 1 9y 5 0. 
If possible, find a solution of the differential equation that  
satisfies the given side conditions. The conditions specified at 
two different points are called boundary conditions.

	39.	 y(0) 5 0, y(p/6) 5 21	 40.	 y(0) 5 0, y(p) 5 0

	41.	 y9(0) 5 0, y9(p/4) 5 0	 42.	 y(0) 5 1, y9(p) 5 5

	43.	 y(0) 5 0, y(p) 5 4	 44.	 y9(p/3) 5 1, y9(p) 5 0

Discussion Problems
In Problems 45 and 46, use Problem 63 in Exercises 1.1 and 
(2) and (3) of this section.

	45.	 Find a function y 5 f (x) whose graph at each point (x, y) has 
the slope given by 8e 2x 1 6x and has the y-intercept (0, 9).

	46.	 Find a function y 5 f (x) whose second derivative is  
y 0 5 12x  2  2 at each point (x, y) on its graph and  
y 5 2x 1 5 is tangent to the graph at the point correspond-
ing to x 5 1.

	47.	 Consider the initial-value problem y9 5 x 2 2y, y(0) 5 1
2 . 

Determine which of the two curves shown in FIGURE 1.2.11 
is the only plausible solution curve. Explain your reasoning.
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x

y

1

1

(0, ¹⁄₂)

FIGURE 1.2.11  Graph for Problem 47

	48.	 Without attempting to solve the initial-value problem  
y9 5 x 2 1 y 2, y(0) 5 1, find the values of y9(0) and y (0).

	49.	 Suppose that the first-order differential equation  
dy/dx 5 f (x, y) possesses a one-parameter family of solu-
tions and that f (x, y) satisfies the hypotheses of Theorem 
1.2.1 in some rectangular region R of the xy-plane. Explain 
why two different solution curves cannot intersect or be 
tangent to each other at a point (x0, y0) in R.

	50.	 The functions

	 y(x) 5 1
16x 

4, 2q , x , q

		  and	 y(x) 5 e 0, x , 0
1

16x 
 4, x $ 0

		  have the same domain but are clearly different. See  
FIGURES 1.2.12(a) and 1.2.12(b), respectively. Show that both 
functions are solutions of the initial-value problem  
dy/dx 5 xy 1/2, y(2) 5 1 on the interval (2q , q ). Resolve 
the apparent contradiction between this fact and the last sen-
tence in Example 5.

   FIGURE 1.2.12  Two solutions of the IVP in Problem 50

y

x

(2, 1)
1

(a)

y

x

(2, 1)
1

(b)

	51.	 Show that

x 5 #
y

0

1

"t3 1 1
 dt

		  is an implicit solution of the initial-value problem

               2 

d 
 2y

dx 
2 2 3y 

2 5 0, y(0) 5 0, y r(0) 5 1.

		  Assume that y $ 0. [Hint: The integral is nonelementary. 
See (ii) in the Remarks at the end of Section 1.1.]

1.3	 Differential Equations as Mathematical Models

INTRODUCTION  In this section we introduce the notion of a mathematical model. Roughly 
speaking, a mathematical model is a mathematical description of something. This description could 
be as simple as a function. For example, Leonardo da Vinci (1452–1519) was able to deduce the 
speed v of a falling body by examining a sequence. Leonardo allowed water drops to fall, at equally 
spaced intervals of time, between two boards covered with blotting paper. When a spring mechanism 
was disengaged, the boards were clapped together. See FIGURE 1.3.1. By carefully examining the 
sequence of water blots, Leonardo discovered that the distances between consecutive drops increased 
in “a continuous arithmetic proportion.” In this manner he discovered the formula v 5 gt.

Although there are many kinds of mathematical models, in this section we focus only on dif-
ferential equations and discuss some specific differential-equation models in biology, physics, 
and chemistry. Once we have studied some methods for solving DEs, in Chapters 2 and 3 we 
return to, and solve, some of these models.

  Mathematical Models  It is often desirable to describe the behavior of some real-life 
system or phenomenon, whether physical, sociological, or even economic, in mathematical terms. 
The mathematical description of a system or a phenomenon is called a mathematical model and 
is constructed with certain goals in mind. For example, we may wish to understand the mecha-
nisms of a certain ecosystem by studying the growth of animal populations in that system, or we 
may wish to date fossils by means of analyzing the decay of a radioactive substance either in the 
fossil or in the stratum in which it was discovered.

Construction of a mathematical model of a system starts with identification of the variables that 
are responsible for changing the system. We may choose not to incorporate all these variables into 
the model at first. In this first step we are specifying the level of resolution of the model. Next, 
we make a set of reasonable assumptions or hypotheses about the system we are trying to describe. 
These assumptions will also include any empirical laws that may be applicable to the system.

FIGURE 1.3.1  Da Vinci’s apparatus 
for determining the speed of falling 
body
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For some purposes it may be perfectly within reason to be content with low-resolution models. 
For example, you may already be aware that in modeling the motion of a body falling near the surface 
of the Earth, the retarding force of air friction is sometimes ignored in beginning physics courses; 
but if you are a scientist whose job it is to accurately predict the flight path of a long-range projectile, 
air resistance and other factors such as the curvature of the Earth have to be taken into account.

Since the assumptions made about a system frequently involve a rate of change of one or more 
of the variables, the mathematical depiction of all these assumptions may be one or more equa-
tions involving derivatives. In other words, the mathematical model may be a differential equation 
or a system of differential equations.

Once we have formulated a mathematical model that is either a differential equation or a 
system of differential equations, we are faced with the not insignificant problem of trying to solve 
it. If we can solve it, then we deem the model to be reasonable if its solution is consistent with 
either experimental data or known facts about the behavior of the system. But if the predictions 
produced by the solution are poor, we can either increase the level of resolution of the model or 
make alternative assumptions about the mechanisms for change in the system. The steps of the 
modeling process are then repeated as shown in FIGURE 1.3.2.

Assumptions
and hypotheses

Mathematical
formulation

Check model
predictions with

known facts

Obtain
solutions

Express assumptions
in terms of DEs

Display predictions
of the model

(e.g., graphically)

If necessary,
alter assumptions

or increase resolution
of the model

Solve the DEs

FIGURE 1.3.2  Steps in the modeling process

Of course, by increasing the resolution we add to the complexity of the mathematical model and 
increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time t. A solution of 
the model then gives the state of the system; in other words, for appropriate values of t, the values 
of the dependent variable (or variables) describe the system in the past, present, and future.

  Population Dynamics  One of the earliest attempts to model human population growth 
by means of mathematics was by the English economist Thomas Robert Malthus (1776–1834) 
in 1798. Basically, the idea of the Malthusian model is the assumption that the rate at which a 
population of a country grows at a certain time is proportional* to the total population of the 
country at that time. In other words, the more people there are at time t, the more there are going 
to be in the future. In mathematical terms, if P(t) denotes the total population at time t, then this 
assumption can be expressed as

	
dP

dt
 r  P  or 

dP
dt

5 kP,� (1)

where k is a constant of proportionality. This simple model, which fails to take into account many 
factors (immigration and emigration, for example) that can influence human populations to either 
grow or decline, nevertheless turned out to be fairly accurate in predicting the population of the 
United States during the years 1790–1860. Populations that grow at a rate described by (1) are 
rare; nevertheless, (1) is still used to model growth of small populations over short intervals of 
time, for example, bacteria growing in a petri dish.

*If two quantities u and v are proportional, we write u ~ v. This means one quantity is a constant multiple 
of the other: u 5 kv.
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  Radioactive Decay  The nucleus of an atom consists of combinations of protons and 
neutrons. Many of these combinations of protons and neutrons are unstable; that is, the atoms 
decay or transmute into the atoms of another substance. Such nuclei are said to be radioactive. 
For example, over time, the highly radioactive radium, Ra-226, transmutes into the radioactive 
gas radon, Rn-222. In modeling the phenomenon of radioactive decay, it is assumed that the 
rate dA/dt at which the nuclei of a substance decay is proportional to the amount (more precisely, 
the number of nuclei) A(t) of the substance remaining at time t:

	
dA

dt
r A  or 

dA

dt
5 kA.� (2)

Of course equations (1) and (2) are exactly the same; the difference is only in the interpretation 
of the symbols and the constants of proportionality. For growth, as we expect in (1), k . 0, and 
in the case of (2) and decay, k , 0.

The model (1) for growth can be seen as the equation dS/dt 5 rS, which describes the growth of 
capital S when an annual rate of interest r is compounded continuously. The model (2) for decay also 
occurs in a biological setting, such as determining the half-life of a drug—the time that it takes for 
50% of a drug to be eliminated from a body by excretion or metabolism. In chemistry, the decay 
model (2) appears as the mathematical description of a first-order chemical reaction. The point is this:

A single differential equation can serve as a mathematical model for many different 
phenomena.

Mathematical models are often accompanied by certain side conditions. For example, in (1) 
and (2) we would expect to know, in turn, an initial population P0 and an initial amount of radio-
active substance A0 that is on hand. If this initial point in time is taken to be t 5 0, then we know 
that P(0) 5 P0 and A(0) 5 A0. In other words, a mathematical model can consist of either an initial-
value problem or, as we shall see later in Section 3.9, a boundary-value problem.

  Newton’s Law of Cooling/Warming  According to Newton’s empirical law of  
cooling—or warming—the rate at which the temperature of a body changes is proportional to the 
difference between the temperature of the body and the temperature of the surrounding medium, 
the so-called ambient temperature. If T(t) represents the temperature of a body at time t, Tm the 
temperature of the surrounding medium, and dT/dt the rate at which the temperature of the body 
changes, then Newton’s law of cooling/warming translates into the mathematical statement

	
dT

dt
r T 2 Tm  or 

dT
dt

5 k(T 2 Tm ) ,� (3)

where k is a constant of proportionality. In either case, cooling or warming, if Tm is a constant, 
it stands to reason that k , 0.

  Spread of a Disease  A contagious disease—for example, a flu virus—is spread through-
out a community by people coming into contact with other people. Let x(t) denote the number 
of people who have contracted the disease and y(t) the number of people who have not yet been 
exposed. It seems reasonable to assume that the rate dx/dt at which the disease spreads is pro-
portional to the number of encounters or interactions between these two groups of people. If we 
assume that the number of interactions is jointly proportional to x(t) and y(t), that is, proportional 
to the product xy, then

	
dx
dt

5 kxy,� (4)

where k is the usual constant of proportionality. Suppose a small community has a fixed population 
of n people. If one infected person is introduced into this community, then it could be argued that x(t) 
and y(t) are related by x 1 y 5 n 1 1. Using this last equation to eliminate y in (4) gives us the model

	
dx
dt

5 kx(n 1 1 2 x) .� (5)

An obvious initial condition accompanying equation (5) is x(0) 5 1.

  Chemical Reactions  The disintegration of a radioactive substance, governed by the 
differential equation (2), is said to be a first-order reaction. In chemistry, a few reactions follow 
this same empirical law: If the molecules of substance A decompose into smaller molecules, it 
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is a natural assumption that the rate at which this decomposition takes place is proportional to 
the amount of the first substance that has not undergone conversion; that is, if X(t) is the amount 
of substance A remaining at any time, then dX/dt 5 kX, where k is a negative constant since X is 
decreasing. An example of a first-order chemical reaction is the conversion of t-butyl chloride 
into t-butyl alcohol:

	 (CH3)3CCl 1 NaOH S (CH3)3COH 1 NaCl.

Only the concentration of the t-butyl chloride controls the rate of reaction. But in the reaction

	 CH3Cl 1 NaOH S CH3OH 1 NaCl,

for every molecule of methyl chloride, one molecule of sodium hydroxide is consumed, thus 
forming one molecule of methyl alcohol and one molecule of sodium chloride. In this case the 
rate at which the reaction proceeds is proportional to the product of the remaining concentrations 
of CH3Cl and of NaOH. If X denotes the amount of CH3OH formed and a and b are the given 
amounts of the first two chemicals A and B, then the instantaneous amounts not converted to 
chemical C are a 2 X and b 2 X, respectively. Hence the rate of formation of C is given by

	
dX

dt
5 k(a 2 X) (b 2 X) ,� (6)

where k is a constant of proportionality. A reaction whose model is equation (6) is said to be 
second order.

  Mixtures  The mixing of two salt solutions of differing concentrations gives rise to a 
first-order differential equation for the amount of salt contained in the mixture. Let us suppose 
that a large mixing tank initially holds 300 gallons of brine (that is, water in which a certain 
number of pounds of salt has been dissolved). Another brine solution is pumped into the large 
tank at a rate of 3 gallons per minute; the concentration of the salt in this inflow is 2 pounds of 
salt per gallon. When the solution in the tank is well stirred, it is pumped out at the same rate as 
the entering solution. See FIGURE 1.3.3. If A(t) denotes the amount of salt (measured in pounds) 
in the tank at time t, then the rate at which A(t) changes is a net rate:

	
dA
dt

5 ainput rate
of salt

b 2 aoutput rate
of salt

b 5 Rin 2 Rout.� (7)

The input rate Rin at which the salt enters the tank is the product of the inflow concentration of 
salt and the inflow rate of fluid. Note that Rin is measured in pounds per minute:

	 concentration
	 of salt	 input rate	 input rate
	 in inflow	 of brine	 of salt
	 T	 T	 T

	 Rin 5 (2 lb/gal) # (3 gal/min) 5 (6 lb/min).

Now, since the solution is being pumped out of the tank at the same rate that it is pumped in, the num-
ber of gallons of brine in the tank at time t is a constant 300 gallons. Hence the concentration of the 
salt in the tank, as well as in the outflow, is c(t) 5 A(t)/300 lb/gal, and so the output rate Rout of salt is

	 concentration
	 of salt	 output rate	 output rate
	 in outflow	 of brine	 of salt
	 T	 T	 T

	 Rout 5 aA( t)
300

 lb/galb # (3 gal/min) 5
A( t)
100

  lb/min.

The net rate (7) then becomes

	
dA
dt

5 6 2
A

100
    or  

dA
dt

1
1

100
 A 5 6.� (8)

If rin and rout denote general input and output rates of the brine solutions,* respectively, then 
there are three possibilities: rin 5 rout , rin . rout , and rin , rout . In the analysis leading to (8) we 
have assumed that rin 5 rout . In the latter two cases, the number of gallons of brine in the tank is 

constant
300 gal

input rate of brine
3 gal/min

output rate of brine
3 gal/min

FIGURE 1.3.3  Mixing tank

*Don’t confuse these symbols with Rin and Rout , which are input and output rates of salt.

22  |  CHAPTER 1  Introduction to Differential Equations

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



either increasing (rin . rout) or decreasing (rin , rout) at the net rate rin 2 rout . See Problems 10–12 
in Exercises 1.3.

  Draining a Tank  Evangelista Torricelli (1608–1647) was an Italian physicist who  
invented the barometer and was a student of Galileo Galilei. In hydrodynamics, Torricelli’s law 
states that the speed v of efflux of water through a sharp-edged hole at the bottom of a tank  
filled to a depth h is the same as the speed that a body (in this case a drop of water) would acquire 
in falling freely from a height h; that is, v 5 "2gh, where g is the acceleration due to gravity. This 
last expression comes from equating the kinetic energy 1

2  mv 2 with the potential energy mgh and  
solving for v. Suppose a tank filled with water is allowed to drain through a hole under the  
influence of gravity. We would like to find the depth h of water remaining in the tank at time t. 
Consider the tank shown in FIGURE 1.3.4. If the area of the hole is Ah (in ft 2) and the speed of the 

water leaving the tank is v 5 "2gh (in ft/s), then the volume of water leaving the tank per  

second is Ah"2gh (in ft 3/s). Thus if V(t) denotes the volume of water in the tank at time t,

	
dV
dt

5 2Ah"2gh,� (9)

where the minus sign indicates that V is decreasing. Note here that we are ignoring the possibility 
of friction at the hole that might cause a reduction of the rate of flow there. Now if the tank is such 
that the volume of water in it at time t can be written V(t) 5 Aw  h, where Aw (in ft 2) is the constant 
area of the upper surface of the water (see Figure 1.3.4), then dV/dt 5 Aw dh/dt. Substituting this last 
expression into (9) gives us the desired differential equation for the height of the water at time t:

	
dh

dt
5 2 

Ah

Aw

 "2gh.� (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this case we must 
express the upper surface area of the water as a function of h; that is, Aw 5 A(h). See Problem 14 
in Exercises 1.3.

  Series Circuits  The mathematical analysis of electrical circuits and networks is relatively 
straightforward, using two laws formulated by the German physicist Gustav Robert Kirchhoff 
(1824–1887) in 1845 while he was still a student. Consider the single-loop LRC-series circuit 
containing an inductor, resistor, and capacitor shown in FIGURE 1.3.5(a). The current in a circuit after 
a switch is closed is denoted by i(t); the charge on a capacitor at time t is denoted by q(t). The letters 
L, R, and C are known as inductance, resistance, and capacitance, respectively, and are generally 
constants. Now according to Kirchhoff’s second law, the impressed voltage E(t) on a closed loop 
must equal the sum of the voltage drops in the loop. Figure 1.3.5(b) also shows the symbols and 
the formulas for the respective voltage drops across an inductor, a resistor, and a capacitor. Since 
current i(t) is related to charge q(t) on the capacitor by i 5 dq/dt, by adding the three voltage drops

	 Inductor	 Resistor	 Capacitor

	 L 
di
dt

5 L 
d 

2q
dt 

2 ,    iR 5 R 
dq
dt

,  
1
C

 q

and equating the sum to the impressed voltage, we obtain a second-order differential equation

	  L 
d 

2q
dt 

2 1 R 
dq
dt

1
1
C

 q 5 E( t) .� (11)

We will examine a differential equation analogous to (11) in great detail in Section 3.8.

  Falling Bodies  In constructing a mathematical model of the motion of a body moving in 
a force field, one often starts with Newton’s second law of motion. Recall from elementary phys-
ics that Newton’s first law of motion states that a body will either remain at rest or will continue 
to move with a constant velocity unless acted upon by an external force. In each case this is 
equivalent to saying that when the sum of the forces F 5 SFk —that is, the net or resultant force—
acting on the body is zero, then the acceleration a of the body is zero. Newton’s second law of 
motion indicates that when the net force acting on a body is not zero, then the net force is propor-
tional to its acceleration a, or more precisely, F 5 ma, where m is the mass of the body.

Aw

Ah

h

FIGURE 1.3.4  Water draining from a 
tank

Inductor

di
dt

L
i

Resistor

C

i
R

i

Capacitor

q
1
C

(a) LRC-series circuit

(b) Symbols and voltage drops

L
R

C

E(t)

resistance R: ohms (Ω)

voltage drop across: iR

capacitance C: farads (f)

voltage drop across: 

inductance L: henrys (h)

voltage drop across: L

FIGURE 1.3.5  Current i(t) and charge 
q(t) are measured in amperes (A) and 
coulombs (C), respectively
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Now suppose a rock is tossed upward from a roof of a building as illustrated in FIGURE 1.3.6. 
What is the position s(t) of the rock relative to the ground at time t ? The acceleration of the rock 
is the second derivative d  2s/dt  2. If we assume that the upward direction is positive and that no 
force acts on the rock other than the force of gravity, then Newton’s second law gives

	 m 
d 

2s

dt 
2 5 2mg    or  

d 
2s

dt 
2 5 2g.� (12)

In other words, the net force is simply the weight F 5 F1 5 2W of the rock near the surface of 
the Earth. Recall that the magnitude of the weight is W 5 mg, where m is the mass of the body 
and g is the acceleration due to gravity. The minus sign in (12) is used because the weight of the 
rock is a force directed downward, which is opposite to the positive direction. If the height of the 
building is s0 and the initial velocity of the rock is v0, then s is determined from the second-order 
initial-value problem

	
d 

2s

dt 
2 5 2g,  s (0) 5 s0,  s r (0) 5 v0.� (13)

Although we have not stressed solutions of the equations we have constructed, we note that (13) 
can be solved by integrating the constant 2g twice with respect to t. The initial conditions  
determine the two constants of integration. You might recognize the solution of (13) from elemen-
tary physics as the formula s(t) 5 21

2 gt 2 1 v0 t 1 s0.

  Falling Bodies and Air Resistance  Prior to the famous experiment by Italian  
mathematician and physicist Galileo Galilei (1564–1642) from the Leaning Tower of Pisa, it 
was generally believed that heavier objects in free fall, such as a cannonball, fell with a greater 
acceleration than lighter objects, such as a feather. Obviously a cannonball and a feather, when 
dropped simultaneously from the same height, do fall at different rates, but it is not because a 
cannonball is heavier. The difference in rates is due to air resistance. The resistive force of air 
was ignored in the model given in (13). Under some circumstances a falling body of mass  
m—such as a feather with low density and irregular shape—encounters air resistance propor-
tional to its instantaneous velocity v. If we take, in this circumstance, the positive direction to 
be oriented downward, then the net force acting on the mass is given by F 5 F1 1 F2 5 mg 2 kv, 
where the weight F1 5 mg of the body is a force acting in the positive direction and air resis-
tance F2 5 2kv is a force, called viscous damping, or drag, acting in the opposite or upward 
direction. See FIGURE 1.3.7. Now since v is related to acceleration a by a 5 dv/dt, Newton’s second 
law becomes F 5 ma 5 m dv/dt. By equating the net force to this form of Newton’s second law, 
we obtain a first-order differential equation for the velocity v(t) of the body at time t,

	  m 
dv
dt

5 mg 2 kv.� (14)

Here k is a positive constant of proportionality called the drag coefficient. If s(t) is the distance 
the body falls in time t from its initial point of release, then v 5 ds/dt and a 5 dv/dt 5 d  2s/dt 2. 
In terms of s, (14) is a second-order differential equation

	 m 
d 

2s

dt 
2 5 mg 2 k 

ds

dt
    or    m 

d 
2s

dt 
2 1 k 

ds

dt
5 mg.� (15)

  Suspended Cables  Suppose a flexible cable, wire, or heavy rope is suspended between 
two vertical supports. Physical examples of this could be a long telephone wire strung between 
two posts as shown in red in FIGURE 1.3.8(a), or one of the two cables supporting the roadbed of a 
suspension bridge shown in red in Figure 1.3.8(b). Our goal is to construct a mathematical model 
that describes the shape that such a cable assumes.

To begin, let’s agree to examine only a portion or element of the cable between its lowest point 
P1 and any arbitrary point P2. As drawn in blue in FIGURE 1.3.9, this element of the cable is the 
curve in a rectangular coordinate system with the y-axis chosen to pass through the lowest point 
P1 on the curve and the x-axis chosen a units below P1. Three forces are acting on the cable: the 
tensions T1 and T2 in the cable that are tangent to the cable at P1 and P2, respectively, and the 
portion W of the total vertical load between the points P1 and P2. Let T1 5 | T1 |,  
T2 5 | T2 |, and W 5 | W | denote the magnitudes of these vectors. Now the tension T2 resolves 

FIGURE 1.3.7  Falling body of mass m

kv

mg

positive
direction

gravity

air resistance

FIGURE 1.3.8  Cables suspended 
between vertical supports

(b) Suspension bridge

(a) Telephone wires

FIGURE 1.3.6  Position of rock 
measured from ground level

building

s0

rock

v0

ground

s(t)

FIGURE 1.3.9  Element of cable

y

x
(x, 0)

(0, a)

wirewire

T1

T2

T2 sin 

P1

P2

W

u
u

T2 cos u
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REMARKS
Except for equation (16), the differential equations derived in this section have described a 
dynamical system—a system that changes or evolves over time. Since the study of dynamical 
systems is a branch of mathematics currently in vogue, we shall occasionally relate the termi-
nology of that field to the discussion at hand.

In more precise terms, a dynamical system consists of a set of time-dependent variables, 
called state variables, together with a rule that enables us to determine (without ambiguity) the 
state of the system (this may be past, present, or future states) in terms of a state prescribed at 
some time t0. Dynamical systems are classified as either discrete-time systems or continuous-time  
systems. In this course we shall be concerned only with continuous-time dynamical systems—
systems in which all variables are defined over a continuous range of time. The rule or the 
mathematical model in a continuous-time dynamical system is a differential equation or a system 
of differential equations. The state of the system at a time t is the value of the state variables at 
that time; the specified state of the system at a time t0 is simply the initial conditions that ac-
company the mathematical model. The solution of the initial-value problem is referred to as the 
response of the system. For example, in the preceding case of radioactive decay, the rule is  
dA/dt 5 kA. Now if the quantity of a radioactive substance at some time t0 is known, say  
A(t0) 5 A0, then by solving the rule, the response of the system for t  t0 is found to be 
A( t) 5 A0e

t2 t0 (see Section 2.7). The response A(t) is the single-state variable for this system. 
In the case of the rock tossed from the roof of the building, the response of the system, the solu-
tion of the differential equation d  2s/dt  2 5 2g subject to the initial state s(0) 5 s0, s9(0) 5 v0, is 
the function s(t) 5 21

2 gt 2 1 v0t 1 s0, 0 # t # T, where the symbol T represents the time when 
the rock hits the ground. The state variables are s(t) and s9(t), which are, respectively, the vertical 
position of the rock above ground and its velocity at time t. The acceleration s 0(t) is not a state 
variable since we only have to know any initial position and initial velocity at a time t0 to uniquely 
determine the rock’s position s(t) and velocity s9(t) 5 v(t) for any time in the interval [t0, T ]. The 
acceleration s 0(t) 5 a(t) is, of course, given by the differential equation s 0(t) 5 2g, 0 , t , T.

One last point: Not every system studied in this text is a dynamical system. We shall also 
examine some static systems in which the model is a differential equation.

Population Dynamics

	 1.	 Under the same assumptions underlying the model in (1), 
determine a differential equation governing the growing 
population P(t) of a country when individuals are allowed 
to immigrate into the country at a constant rate r . 0. What 
is the differential equation for the population P(t) of the 
country when individuals are allowed to emigrate at a con-
stant rate r . 0?

	 2.	 The population model given in (1) fails to take death into 
consideration; the growth rate equals the birth rate. In  

another model of a changing population of a community, it 
is assumed that the rate at which the population changes is 
a net rate—that is, the difference between the rate of births 
and the rate of deaths in the community. Determine a model 
for the population P(t) if both the birth rate and the death 
rate are proportional to the population present at time t.

	 3.	 Using the concept of a net rate introduced in Problem 2, 
determine a differential equation governing a population 
P(t) if the birth rate is proportional to the population present 
at time t but the death rate is proportional to the square of 
the population present at time t.

1.3 Exercises	 Answers to selected odd-numbered problems begin on page ANS-1.

into horizontal and vertical components T2 cos u and T2 sin u. Because of static equilibrium, we 
can write

	 T1 5 T2 cos u   and  W 5 T2 sin u .

By dividing the last equation by the first, we eliminate T2 and get tan u 5 W/T1. But since  
dy/dx 5 tan u, we arrive at

	
dy
dx

5
W
T1

.� (16)

This simple first-order differential equation serves as a model for both the shape of a flexible wire, 
such as a telephone wire hanging under its own weight, as well as the shape of the cables that 
support the roadbed. We will come back to equation (16) in Exercises 2.2 and in Section 3.11.
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	 4.	 Modify the model in Problem 3 for the net rate at which the 
population P(t) of a certain kind of fish changes by also as-
suming that the fish are harvested at a constant rate h . 0.

Newton’s Law of Cooling/Warming

	 5.	 A cup of coffee cools according to Newton’s law of cooling 
(3). Use data from the graph of the temperature T(t) in 
FIGURE 1.3.10 to estimate the constants Tm, T0, and k in a 
model of the form of the first-order initial-value problem

	
dT
dt

5 k(T 2 Tm ) ,  T (0) 5 T0.

FIGURE 1.3.10  Cooling curve in Problem 5
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	 6.	 The ambient temperature Tm in (3) could be a function of 
time t. Suppose that in an artificially controlled environment, 
Tm(t) is periodic with a 24-hour period, as illustrated in 
FIGURE 1.3.11. Devise a mathematical model for the tem-
perature T(t) of a body within this environment.

		  FIGURE 1.3.11  Ambient temperature in Problem 6
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Spread of a Disease/Technology

	 7.	 Suppose a student carrying a flu virus returns to an isolated 
college campus of 1000 students. Determine a differential 
equation governing the number of students x(t) who have 
contracted the flu if the rate at which the disease spreads is 
proportional to the number of interactions between the num-
ber of students with the flu and the number of students who 
have not yet been exposed to it.

	 8.	 At a time t 5 0, a technological innovation is introduced into 
a community with a fixed population of n people. Determine 
a differential equation governing the number of people x(t) 
who have adopted the innovation at time t if it is assumed that 
the rate at which the innovation spreads through the commu-
nity is jointly proportional to the number of people who have 
adopted it and the number of people who have not adopted it.

Mixtures

	 9.	 Suppose that a large mixing tank initially holds 300 gallons 
of water in which 50 pounds of salt has been dissolved. Pure 
water is pumped into the tank at a rate of 3 gal/min, and 
when the solution is well stirred, it is pumped out at the 
same rate. Determine a differential equation for the amount 
A(t) of salt in the tank at time t. What is A(0)?

	10.	 Suppose that a large mixing tank initially holds 300 gallons 
of water in which 50 pounds of salt has been dissolved. 
Another brine solution is pumped into the tank at a rate of 
3 gal/min, and when the solution is well stirred, it is pumped 
out at a slower rate of 2 gal/min. If the concentration of the 
solution entering is 2 lb/gal, determine a differential equa-
tion for the amount A(t) of salt in the tank at time t.

	11.	 What is the differential equation in Problem 10 if the well-
stirred solution is pumped out at a faster rate of 3.5 gal/min?

	12.	 Generalize the model given in (8) of this section by assum-
ing that the large tank initially contains N0 number of gallons 
of brine, rin and rout are the input and output rates of the 
brine, respectively (measured in gallons per minute), cin  
is the concentration of the salt in the inflow, c(t) is the  
concentration of the salt in the tank as well as in the outflow 
at time t (measured in pounds of salt per gallon), and A(t) 
is the amount of salt in the tank at time t.

Draining a Tank

	13.	 Suppose water is leaking from a tank through a circular hole 
of area Ah at its bottom. When water leaks through a hole, 
friction and contraction of the stream near the hole reduce 
the volume of the water leaving the tank per second to 
cAh  "2gh where c (0 , c , 1) is an empirical constant. 
Determine a differential equation for the height h of water 
at time t for the cubical tank in FIGURE 1.3.12. The radius of 
the hole is 2 in. and g 5 32 ft/s 2.

		  FIGURE 1.3.12  Cubical tank in Problem 13

h
10 ft

circular
hole

Aw

	14.	 The right-circular conical tank shown in FIGURE 1.3.13 loses 
water out of a circular hole at its bottom. Determine a dif-
ferential equation for the height of the water h at time t. The 
radius of the hole is 2 in., g 5 32 ft/s 2, and the friction/
contraction factor introduced in Problem 13 is c 5 0.6. 

FIGURE 1.3.13  Conical tank in Problem 14
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Series Circuits

	15.	 A series circuit contains a resistor and an inductor as shown 
in FIGURE 1.3.14. Determine a differential equation for the 
current i(t) if the resistance is R, the inductance is L, and 
the impressed voltage is E(t). 

FIGURE 1.3.14  LR-series circuit in Problem 15
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	16.	 A series circuit contains a resistor and a capacitor as shown 
in FIGURE 1.3.15. Determine a differential equation for the 
charge q(t) on the capacitor if the resistance is R, the  
capacitance is C, and the impressed voltage is E(t).

FIGURE 1.3.15  RC-series circuit in Problem 16
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Falling Bodies and Air Resistance

	17.	 For high-speed motion through the air—such as the skydiver 
shown in FIGURE 1.3.16 falling before the parachute is 
opened—air resistance is closer to a power of the instanta-
neous velocity v(t). Determine a differential equation for 
the velocity v(t) of a falling body of mass m if air resistance 
is proportional to the square of the instantaneous velocity.

FIGURE 1.3.16  Air resistance proportional to square  
of velocity in Problem 17
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Newton’s Second Law and Archimedes’ Principle

	18.	 A cylindrical barrel s ft in diameter of weight w lb is floating 
in water as shown in FIGURE 1.3.17(a). After an initial depres-
sion, the barrel exhibits an up-and-down bobbing motion 
along a vertical line. Using Figure 1.3.17(b), determine a 
differential equation for the vertical displacement y(t) if the 
origin is taken to be on the vertical axis at the surface of the 
water when the barrel is at rest. Assume the downward direc-
tion is positive, that the weight density of the water is  
62.4 lb/ft 3, and that there is no resistance between the barrel 
and the water. Use Archimedes’ principle: Buoyancy, or 

the upward force of the water on the barrel, is equal to the 
weight of the water displaced. Archimedes of Syracuse  
(287 bce–212 bce) was arguably one of the greatest  
scientists/mathematicians of antiquity. Using his approxima-
tion of the number , he found the area of a circle as well 
as the surface area and volume of a sphere.

FIGURE 1.3.17  Bobbing motion of floating barrel in Problem 18
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Newton’s Second Law and Hooke’s Law

	19.	 After a mass m is attached to a spring, it stretches s units 
and then hangs at rest in the equilibrium position as shown 
in FIGURE 1.3.18(b). After the spring/mass system has been 
set in motion, let x(t) denote the directed distance of the 
mass beyond the equilibrium position. As indicated in 
Figure 1.3.18(c), assume that the downward direction is 
positive, that the motion takes place in a vertical straight 
line through the center of gravity of the mass, and that the 
only forces acting on the system are the weight of the mass 
and the restoring force of the stretched spring. Use Hooke’s 
law: The restoring force of a spring is proportional to its 
total elongation. Determine a differential equation for the 
displacement x(t) at time t. 

FIGURE 1.3.18  Spring/mass system in Problem 19
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	20.	 In Problem 19, what is a differential equation for the dis-
placement x(t) if the motion takes place in a medium that 
imparts a damping force on the spring/mass system that is 
proportional to the instantaneous velocity of the mass and 
acts in a direction opposite to that of motion?

Newton’s Second Law and Variable Mass
When the mass m of a body moving through a force field is 
variable, Newton’s second law of motion takes on the following 
form: If the net force acting on a body is not zero, then the net 
force F is equal to the time rate of change of momentum of the 
body. That is,
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	 F 5
d
dt

 (mv)*,� (17)

where mv is momentum. Use this formulation of Newton’s  
second law in Problems 21 and 22.

	21.	 Consider a single-stage rocket that is launched vertically 
upward as shown in the accompanying photo. Let m(t) denote 
the total mass of the rocket at time t (which is the sum of 
three masses: the constant mass of the payload, the constant 
mass of the vehicle, and the variable amount of fuel). Assume 
that the positive direction is upward, air resistance is pro-
portional to the instantaneous velocity v of the rocket, and 
R is the upward thrust or force generated by the propulsion 
system. Use (17) to find a mathematical model for the veloc-
ity v(t) of the rocket.

© Sebastian Kaulitzki/Shutterstock

Rocket in Problem 21

	22.	 In Problem 21, suppose m(t) 5 mp 1 mv 1 mf (t) where mp 
is constant mass of the payload, mv is the constant mass of 
the vehicle, and mf (t) is the variable amount of fuel. 
(a)	 Show that the rate at which the total mass of the rocket 

changes is the same as the rate at which the mass of the 
fuel changes.

(b)	 If the rocket consumes its fuel at a constant rate l, find 
m(t). Then rewrite the differential equation in Problem 
21 in terms of l and the initial total mass m(0) 5 m0.

(c)	 Under the assumption in part (b), show that the burnout 
time tb . 0 of the rocket, or the time at which all the 
fuel is consumed, is tb 5 mf (0)/l, where mf (0) is the 
initial mass of the fuel.

Newton’s Second Law and the Law of Universal 
Gravitation

	23.	 By Newton’s law of universal gravitation, the free-fall ac-
celeration a of a body, such as the satellite shown in 
FIGURE 1.3.19, falling a great distance to the surface is not the 
constant g. Rather, the acceleration a is inversely proportional  
to the square of the distance from the center of the Earth,  
a 5 k/r 2, where k is the constant of proportionality. Use  
the fact that at the surface of the Earth r 5 R and a 5 g to 
determine k. If the positive direction is upward, use Newton’s 
second law and his universal law of gravitation to find a 
differential equation for the distance r.

FIGURE 1.3.19  Satellite in Problem 23
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	24.	 Suppose a hole is drilled through the center of the Earth and 
a bowling ball of mass m is dropped into the hole, as shown 
in FIGURE 1.3.20. Construct a mathematical model that de-
scribes the motion of the ball. At time t let r denote the 
distance from the center of the Earth to the mass m, M denote 
the mass of the Earth, Mr denote the mass of that portion of 
the Earth within a sphere of radius r, and d denote the con-
stant density of the Earth.

FIGURE 1.3.20  Hole through Earth in Problem 24
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Additional Mathematical Models

	25.	 Learning Theory  In the theory of learning, the rate at which 
a subject is memorized is assumed to be proportional to the 
amount that is left to be memorized. Suppose M denotes the 
total amount of a subject to be memorized and A(t) is 
the amount memorized in time t. Determine a differential 
equation for the amount A(t).

	26.	 Forgetfulness  In Problem 25, assume that the rate at which 
material is forgotten is proportional to the amount memo-
rized in time t. Determine a differential equation for A(t) 
when forgetfulness is taken into account.

	27.	 Infusion of a Drug  A drug is infused into a patient’s blood-
stream at a constant rate of r grams per second. 
Simultaneously, the drug is removed at a rate proportional 
to the amount x(t) of the drug present at time t. Determine 
a differential equation governing the amount x(t).

	28.	 Tractrix  A motorboat starts at the origin and moves in the 
direction of the positive x-axis, pulling a waterskier along 
a curve C called a tractrix. See FIGURE 1.3.21. The waterskier, 
initially located on the y-axis at the point (0, s), is pulled by 
keeping a rope of constant length s, which is kept taut 
throughout the motion. At time t . 0 the waterskier is at 
the point P(x, y). Find the differential equation of the path 
of motion C.

*Note that when m is constant, this is the same as F 5 ma.

28  |  CHAPTER 1  Introduction to Differential Equations
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FIGURE 1.3.21  Tractrix curve in Problem 28
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	29.	 Reflecting Surface  Assume that when the plane curve C 
shown in FIGURE 1.3.22 is revolved about the x-axis it 
generates a surface of revolution with the property that all 
light rays L parallel to the x-axis striking the surface are 
reflected to a single point O (the origin). Use the fact that 
the angle of incidence is equal to the angle of reflection to 
determine a differential equation that describes the shape 
of the curve C. Such a curve C is important in applications 
ranging from construction of telescopes to satellite antennas, 
automobile headlights, and solar collectors. [Hint: Inspection 
of the figure shows that we can write f 5 2u. Why? Now 
use an appropriate trigonometric identity.]

© George Dukin/Shutterstock

Satellite dish antenna
FIGURE 1.3.22  Reflecting surface  
in Problem 29
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Discussion Problems

	30.	 Reread Problem 53 in Exercises 1.1 and then give an explicit 
solution P(t) for equation (1). Find a one-parameter family 
of solutions of (1).

	31.	 Reread the sentence following equation (3) and assume that 
Tm is a positive constant. Discuss why we would expect  
k , 0 in (3) in both cases of cooling and warming. You 
might start by interpreting, say, T(t) . Tm in a graphical 
manner.

	32.	 Reread the discussion leading up to equation (8). If we 
assume that initially the tank holds, say, 50 lb of salt, it stands 
to reason that since salt is being added to the tank continu-
ously for t . 0, that A(t) should be an increasing function. 
Discuss how you might determine from the DE, without 
actually solving it, the number of pounds of salt in the tank 
after a long period of time.

	33.	 Population Model  The differential equation dP/dt 5 	
(k cos t)P, where k is a positive constant, is a model of  

human population P(t) of a certain community. Discuss an 
interpretation for the solution of this equation; in other 
words, what kind of population do you think the differential 
equation describes?

	34.	 Rotating Fluid  As shown in FIGURE 1.3.23(a), a right-circular 
cylinder partially filled with fluid is rotated with a constant 
angular velocity v about a vertical y-axis through its center. 
The rotating fluid is a surface of revolution S. To identify S, 
we first establish a coordinate system consisting of a vertical 
plane determined by the y-axis and an x-axis drawn perpen-
dicular to the y-axis such that the point of intersection of the 
axes (the origin) is located at the lowest point on the surface S. 
We then seek a function y 5 f (x), which represents the curve C 
of intersection of the surface S and the vertical coordinate 
plane. Let the point P(x, y) denote the position of a particle 
of the rotating fluid of mass m in the coordinate plane. See 
Figure 1.3.23(b).
(a)	 At P, there is a reaction force of magnitude F due to the 

other particles of the fluid, which is normal to the 
surface S. By Newton’s second law the magnitude of the 
net force acting on the particle is mv2x. What is this force? 
Use Figure 1.3.23(b) to discuss the nature and origin of 
the equations

F cos u 5 mg,    F sin u 5 mv 2x.

(b)	 Use part (a) to find a first-order differential equation 
that defines the function y 5 f (x). 

FIGURE 1.3.23  Rotating fluid in Problem 34

θ

θ mg

x

y

P(x, y)

tangent line to
curve C at P

curve C of intersection
of xy-plane and
surface of revolution

mv2x

y
v

P

(a) (b)

	35.	 Falling Body  In Problem 23, suppose r 5 R 1 s, where s 
is the distance from the surface of the Earth to the falling 
body. What does the differential equation obtained in 
Problem 23 become when s is very small compared to R?

	36.	 Raindrops Keep Falling  In meteorology, the term virga 
refers to falling raindrops or ice particles that evaporate 
before they reach the ground. Assume that a typical raindrop 
is spherical in shape. Starting at some time, which we can 
designate as t 5 0, the raindrop of radius r0 falls from rest 
from a cloud and begins to evaporate.
(a)	 If it is assumed that a raindrop evaporates in such a man-

ner that its shape remains spherical, then it also makes 
sense to assume that the rate at which the raindrop 
evaporates—that is, the rate at which it loses mass—is 
proportional to its surface area. Show that this latter  
assumption implies that the rate at which the radius r of 
the raindrop decreases is a constant. Find r(t). [Hint: See 
Problem 63 in Exercises 1.1.]
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In Problems 1 and 2, fill in the blank and then write this result 
as a linear first-order differential equation that is free of the 
symbol c1 and has the form dy/dx 5 f (x, y). The symbols c1 
and k represent constants.

	 1.	
d

dx
 c1e 

k x 5  

	 2.	
d

dx
 (5 1 c1e 

22x
 ) 5  

In Problems 3 and 4, fill in the blank and then write this result 
as a linear second-order differential equation that is free of the 
symbols c1 and c2 and has the form F( y, y0) 5 0. The symbols 
c1, c2, and k represent constants.

	 3.	
d 

 2

dx 2 (c1 cos kx 1 c2 sin kx) 5  

	 4.	
d 

 2

dx 2 (c1 cosh kx 1 c2 sinh kx) 5  

In Problems 5 and 6, compute y9 and y 0 and then combine 
these derivatives with y as a linear second-order differential 
equation that is free of the symbols c1 and c2 and has the  
form F(y, y9, y0) 5 0. The symbols c1 and c2 represent  
constants.

	 5.	 y 5 c1e 
x 1 c2xe 

x	 6.	 y 5 c1e 
x
 cos x 1 c2e 

x
 sin x

In Problems 7–12, match each of the given differential equations 
with one or more of these solutions:
(a)  y 5 0,  (b)  y 5 2,  (c)  y 5 2x,  (d)  y 5 2x 2.

	 7.	 xy9 5 2y	 8.	 y9 5 2

	 9.	 y9 5 2y 2 4	 10.	 xy9 5 y

	11.	 y 0 1 9y 5 18	 12.	 xy 0 2 y9 5 0

In Problems 13 and 14, determine by inspection at least one  
solution of the given differential equation.

	13.	 y 0 5 y9	 14.	 y9 5 y( y 2 3)

1 Chapter in Review	 Answers to selected odd-numbered problems begin on page ANS-1.

(b)	 If the positive direction is downward, construct a math-
ematical model for the velocity v of the falling raindrop 
at time t. Ignore air resistance. [Hint: Use the form of 
Newton’s second law as given in (17).]

	37.	 Let It Snow  The “snowplow problem” is a classic and 
appears in many differential equations texts but was prob-
ably made famous by Ralph Palmer Agnew:

One day it started snowing at a heavy and steady rate.  
A snowplow started out at noon, going 2 miles the first 
hour and 1 mile the second hour. What time did it start 
snowing?

		  If possible, find the text Differential Equations, Ralph 
Palmer Agnew, McGraw-Hill, and then discuss the con-
struction and solution of the mathematical model.

© aetb/iStock/Thinkstock

Snowplow in Problem 37

	38.	 Reread this section and classify each mathematical model 
as linear or nonlinear.

	39.	 Population Dynamics  Suppose that P9(t) 5 0.15 P(t) rep-
resents a mathematical model for the growth of a certain 
cell culture, where P(t) is the size of the culture (measured 
in millions of cells) at time t (measured in hours). How fast 
is the culture growing at the time t when the size of the 
culture reaches 2 million cells?

	40.	 Radioactive Decay  Suppose that 

	 A9(t) 5 20.0004332 A(t)

		  represents a mathematical model for the decay of  
radium-226, where A(t) is the amount of radium (measured 
in grams) remaining at time t (measured in years). How 
much of the radium sample remains at time t when the 
sample is decaying at a rate of 0.002 grams per year?

30  |  CHAPTER 1  Introduction to Differential Equations
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In Problems 15 and 16, interpret each statement as a differen-
tial equation.

	15.	 On the graph of y 5 f(x), the slope of the tangent line at a 
point P(x, y) is the square of the distance from P(x, y) to the 
origin.

	16.	 On the graph of y 5 f(x), the rate at which the slope changes 
with respect to x at a point P(x, y) is the negative of the slope 
of the tangent line at P(x, y).

	17.	 (a)	 �Give the domain of the function y 5 x 2/3.
(b)	 �Give the largest interval I of definition over which  

y 5 x 2/3 is a solution of the differential equation  
3xy9 2 2y 5 0.

	18.	 (a)	 �Verify that the one-parameter family y 2 2 2y 5 x 2 2  
x 1 c is an implicit solution of the differential equation  
(2y 2 2)y9 5 2x 2 1.

(b)	 �Find a member of the one-parameter family in part (a) 
that satisfies the initial condition y(0) 5 1.

(c)	 �Use your result in part (b) to find an explicit function  
y 5 f(x) that satisfies y(0) 5 1. Give the domain of f.  
Is y 5 f(x) a solution of the initial-value problem? If 
so, give its interval I of definition; if not, explain.

	19.	 Given that y 52
2
x

1 x is a solution of the DE xy9 1 y 5 2x.

		  Find x0 and the largest interval I for which y(x) is a solution 
of the IVP

	 xy r 1 y 5 2x,    y(x0 ) 5 1.

	20.	 Suppose that y(x) denotes a solution of the initial-value  
problem y9 5 x 2 1 y 2, y(1) 5 21 and that y(x) possesses at 
least a second derivative at x 5 1. In some neighborhood  
of x 5 1, use the DE to determine whether y(x) is increasing 
or decreasing, and whether the graph y(x) is concave up or 
concave down.

	21.	 A differential equation may possess more than one family 
of solutions.
(a)	 �Plot different members of the families y 5 f1(x) 5  

x 2 1 c1 and y 5 f2(x) 5 2x 2 1 c2.
(b)	 �Verify that y 5 f1(x) and y 5 f2(x) are two solutions 

of the nonlinear first-order differential equation  
( y9) 2 5 4x 2.

(c)	 �Construct a piecewise-defined function that is a solu-
tion of the nonlinear DE in part (b) but is not a member 
of either family of solutions in part (a).

	22.	 What is the slope of the tangent line to the graph of the 

solution of y9 5 6"y 1 5x 
3 that passes through (21, 4)?

In Problems 23–26, verify that the indicated function is an  
explicit solution of the given differential equation. Give an  
interval of definition I for each solution.

	23.	 y 0 1 y 5 2 cos x 2 2 sin x;  y 5 x sin x 1 x cos x

	24.	 y 0 1 y 5 sec x;  y 5 x sin x 1 (cos x) ln(cos x)

	25.	 x 2y 0 1 xy9 1 y 5 0;  y 5 sin(ln x)

	26.	 x 2y 0 1 xy9 1 y 5 sec(ln x);  

		  y 5 cos(ln x) ln(cos(ln x)) 1 (ln x) sin(ln x)

In Problems 27–30, use (12) of Section 1.1 to verify that  
the indicated function is a solution of the given differential 
equation. Assume an appropriate interval I of definition of 
each solution.

	27.	
dy

dx
1 (sin x)y 5 x; y 5 ecos x#

x

0
te2cos t dt

	28.	
dy

dx
2 2xy 5 e 

x; y 5 e 
x 

2

#
x

0
e 

t2 t 
2

 dt

	29.	 x 
2ys 1 (x 

2 2 x)y r 1 (1 2 x)y 5 0; y 5 x#
x

1

e2t

t
 dt

	30.	 ys 1 y 5 e 
x 

2

; y 5 sin x#
x

0
e 

t 
2

cos t dt 2 cos x#
x

0
e 

t 
2

sin t dt

In Problems 31–34, verify that the indicated expression is an 
implicit solution of the given differential equation.

	31.	 x  

dy

dx
1 y 5

1

y 
2; x 

3y 
3 5 x 

3 1 5

	32.	 ady

dx
b

2

1 1 5
1

y 
2; (x 2 7)2 1 y 

2 5 1

	33.	 y 0 5 2y( y9)3;  y 3 1 3y 5 2 2 3x

	34.	 (1 1 xy)y9 1 y 2 5 0;  y 5 e2xy

	35.	 Find a constant c1 such that y 5 c1 1 cos 3x is a solution of 
the differential equation y  1 9y 5 5.

	36.	 Find constants c1 and c2 such that y 5 c1 1 c2x is a solution 
of the differential equation y9 1 2y 5 3x.

	37.	 If c is an arbitrary constant, find a first-order differential 
equation for which y 5 ce2 x 1 4x 2 6 is a solution. [Hint: 
Differentiate and eliminate c between the two equations.]

	38.	 Find a function y 5 f(x) whose graph passes through  
(0, 0) and whose slope at any point (x, y) in the xy-plane  
is 6 2 2x.

In Problems 39–42, y 5 c1e 
23x 1 c2e 

x 1 4x is a two- 
parameter family of the second-order differential equation 
ys 1 2y r 2 3y 5 212x 1 8. Find a solution of the second- 
order initial-value problem consisting of this differential  
equation and the given initial conditions.

	39.	 y(0) 5 0, y r (0) 5 0	 40.	 y(0) 5 5, y r (0) 5 211

	41.	 y(1) 5 22, y r (1) 5 4	 42.	 y(21) 5 1, y r (21) 5 1

In Problems 43 and 44, verify that the function defined by the 
definite integral is a particular solution of the given differen-
tial equation. In both problems, use Leibniz’s rule for the 
derivative of an integral:

d

dx
 #

v(x)

u(x)
F(x, t) dt 5 F(x, v(x)) 

dv

dx
2 F(x, u(x)) 

du

dx
1 #

v(x)

u(x)

0

0x
 F(x, t) dt.

	43.	 y 0 1 9y 5 f (x);  y(x) 5
1

3#
x

0
 f (t) sin 3(x 2 t) dt
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	44.	 xys 1 y r 2 xy 5 0; y 5 #
p

0
e 

x cos t dt [Hint: After com

puting y r use integration by parts with respect to t.]

	45.	 The graph of a solution of a second-order initial-value prob-
lem d 2y/dx 2 5 f (x, y, y9), y(2) 5 y0, y9(2) 5 y1, is given in 
FIGURE 1.R.1. Use the graph to estimate the values of y0 and y1. 

FIGURE 1.R.1  Graph for Problem 45

y

x

5

–5

5

	46.	 A tank in the form of a right-circular cylinder of radius  
2 ft and height 10 ft is standing on end. If the tank is initially 
full of water, and water leaks from a circular hole of radius 
1
2  in. at its bottom, determine a differential equation for the 

height h of the water at time t. Ignore friction and contrac-
tion of water at the hole.

	47.	 A uniform 10-foot-long heavy rope is coiled loosely on the 
ground. As shown in FIGURE 1.R.2 one end of the rope is 
pulled vertically upward by means of a constant force of  
5 lb. The rope weighs 1 lb/ft. Use Newton’s second law in 
the form given in (17) in Exercises 1.3 to determine a dif-
ferential equation for the height x(t) of the end above ground 
level at time t. Assume that the positive direction is upward.

	 FIGURE 1.R.2  Rope pulled upward in Problem 47

x(t)

5 lb
upward
force

Part Opener: © Nuno Valente Fotografia/Shutterstock; Chapter Opener: © PhilipYb Studio/Shutterstock
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