MATH529

SP.22: Homework 2

Instructions

This homework assignment completes the review of ordinary differential equations, and introduces additional common Mathematica constructs. Exercises and problems are again from chapter 1 of Zill's textbook, and model solutions are presented.

In Mathematica, CTRL+SHIFT+9 opens an equation field in the internal Mathematica format, e.g., $\partial_x f(x)$. This allows an alternative to LATEX equation input. Feel free to use whichever is easier. Export of equations in internal format to PDF is however sometimes dependent on system-installed fonts.

Exercises

From p.17: 18-28

Model solution: 1.2.17 (p. 17)

Statement

Determine x y region in which $y' = y^{2/3}$ would have an unique solution passing through (x_0, y_0) .

Solution

Equation $y' = f(y) = y^{2/3}$ must be continuous with continuous derivative. Since f is continuous everywhere, and f' is discontinuous only at y = 0, the DE has an unique solution throughout the real plane except for initial conditions of the form (x_0 , 0)

DSolve
$$[\{ y' [x] = y[x]^{2/3}, y[0] = 1 \}, y[x], x]$$

Out[•]=

$$\left\{ \left\{ y\left[\,x\,\right]\,\rightarrow\frac{1}{27}\times\left(27+27\,x+9\,x^{2}+x^{3}\right)\,\right\} \right\}$$

Problems

From p.31: 15-43

Model solution: 1.R.15 (p. 31)

Statement

Interpret the following statement as a DE:

On the graph of $y = \phi(x)$, the slope of the tangent at point P(x, y) is the square of the distance from P(x, y) to the origin

Solution

The slope is given by y', and the distance from P(x, y) to the origin is $\sqrt{x^2 + y^2}$, giving DE

 $y' = x^2 + y^2$

a first-order Bernoulli equation.

Model solution: 1.R.31 (p. 31)

Statement

Verify that $x^3 y^3 = x^3 + 5$ is an implicit solution of $x y' + y = 1/y^2$.

Solution

For $x \neq 0$, differentiate the solution to obtain

$$3(y + x y') x^{2} y^{2} = 3 x^{2}, \text{ which reduces to } x y' + y = 1 / y^{2} \text{ for } y \neq 0.$$

$$h(\cdot) = \left[sol = x^{3} (y[x])^{3} = x^{3} + 5 \\ out_{\circ} = \left[x^{3} y[x]^{3} = 5 + x^{3} \\ h(\cdot) = \left[eq = Assuming[x \neq 0, FullSimplify[D[sol, x]]] \\ y[x]^{2} (y[x] + x y'[x]) = 1 \\ out_{\circ} = \left[y[x]^{2} (y[x] + x y'[x]) = 1 \\ h(\cdot) = \left[x^{3} x^{2} (y[x] + x y'[x]) = 1 \\ y[x]^{2} (y[x] + x y'[x]) = 1 \\ u(\cdot) = \left[y[x] + x y'[x] = \frac{1}{y[x]^{2}} \\ u(\cdot) = \left[y[x] + x y'[x] = \frac{1}{y[x]^{2}} \\ u(\cdot) = \left[x^{3} x^{2} (y[x] + x y'[x]) = 1 \\ u(\cdot) = \left[x^{3} x^{3} (y[x] +$$