MATH529: Mathematical methods for the physical sciences IIApril 28, 2024

Practice Final Examination

Solve the following problems (5 course points each). Present a brief motivation of your method of solution. Problems 9 and 10 are optional; attempt them if you wis to improve your midterm examination score.

  1. Solve the eigenvalue problem

    y''+3y'+2y+λy=0,y(0)=0,y(1)=0.

    Solution. Linear, second order, constant coefficient, homogeneous ODE with homogeneous boundary conditions (BCs), i.e., an eigenvalue problem. Try solutions of form y(x)erx to obtain characteristic equation

    r2+3r+(λ+2)=0,

    with solutions

    r1,2=12(-3±9-4(λ+2))=-32±1-4λ2=-α±β,

    leading to

    y(x)=Aer1x+Ber2x.

    For β=0, obtain y(x)=Ae-αx+Bxe-αx. Apply BCs

    x=0: A=0 x=1: Ae-α+Be-α=0 A=B=0,

    only a trivial solution.

    For β0, apply BCs

    x=0: A+B=0 x=1: Aer1+Ber2=0 .

    Non-trivial solutions (i.e., A0 or B0) obtained only if principal determinant of above is zero

    er2-er1=0e-α(eβ-e-β)=0.

    Since α=-3/2, eα0, hence

    eβ-e-β=2sinhβ=0,

    with solutions only for Δ=1-4λ<0 in which case β=i24λ-1, and

    sinhβ=isin4λ-12=04λ-12=kπλk=14[(2kπ)2+1],

    eigenvalues of the problem, with associated eigenfunctions

    yk(x)=e-3x/2sin(kπx).

    Note: recall that eigenfunctions are determined up to a multiplicative constant.

  2. Solve the eigenvalue problem

    y''+λy=0,y(0)+y'(0)=0,y(1)+3y'(1)=0.

    Solution. Linear, second order, constant coefficient, homogeneous ODE with homogeneous boundary conditions (BCs), i.e., an eigenvalue problem. Try solutions of form y(x)erx to obtain characteristic equation r2+λ=0, with solutions with solutions r1,2=±λ. When λ=0, y(x)=A+Bx and BCs give only the trivial solution y=0. For λ0, y(x)=Aeαx+Be-αx, α=λ, obtain y'(x)=α(Aeαx-Be-αx), and BCs give

    x=0: A+B+α(A-B)=0 x=1: Aeα+Be-α+3α(Aeα-Be-α)=0 { (1+α)A + (1-α)B = 0 (1+3α)eαA + (1-3α)e-αB = 0 ..

    Non-trivial solution obtained if

    (1-2α-3α2)e-α-(1+2α-3α2)eα=0-2(1-3α2)sinhα-4αcoshα=0tanhα=-2α1-3α2.

    Sturm-Liouville theorem guarantees existence of a countably infinite number of eigenvalues, impossible for α, thus implying α=iβ (λ<0), β, in which case eigenvalues βk are solutions of

    tanβ=-2β1+3β2,

    with associated ODE solution

    yk(x)=Aeiβx+Be-iβx=(A+B)cos(βx)+i(A-B)sin(βx).

    Use x=0 BC, A+B=-α(A-B) to obtain A+B=-iβ(A-B), and the eigenfunctions are

    yk(x)=βkcos(βkx)-sin(βkx).

  3. Find the Fourier series

    F(x)=a0+k=1(akcos(kx)+bksin(kx))

    of f:[0,π], f(x)=2x-3x2.

    Solution. The system {1,cosx,sinx,cos2x,sin2x,} is an orthogonal basis. Take scalar products

    0πF(x)1dx=πa0=0π(2x-3x2)1dx=π2-π3=π2(1-π)a0=π(1-π)
    0πF(x)cos(kx)dx=ak0πcos2(kx)dx=akπ2=0π(2x-3x2)cos(kx)dxak=2π0π(2x-3x2)cos(kx)dx
    bk=2π0π(2x-3x2)sin(kx)dx.

    Form

    ck=π2(ak+ibk)=0π(2x-3x2)eikxdx.

    Integrate by parts, u=2x-3x2, dv=eikxdxv=eikx/(ik)

    0π(2x-3x2)eikxdx=[(2x-3x2)eikxik]x=0x=π-1ik0π(2-6x)eikxdx=3π2-2πik-1ik0π(2-6x)eikxdx.

    Another integration by parts, u=2-6x, dv=eikxdxv=eikx/(ik) gives

    0π(2-6x)eikxdx=[(2-6x)eikxik]x=0x=π+6ik0πeikxdx=6π-2ik-2ik+12k2=6π-4ik+12k2.

    Obtain

    ck=3π2-2πik-1ik(6π-4ik+12k2)=3π2-2πik-6π-4k2-12ik3=6π-4k2+i(12k3-3π2-2πk)
    ak=2(6π-4)πk2,bk=2π(12k3-3π2-2πk).
  4. Find u(x,t), u:[0,1]×[0,) by solving the problem

    ut=uxx,u(0,t)=0,u(1,t)=0,u(x,0)=x(1-x).

    Solution. Linear, second order, homogeneous PDE with homogeneous BCs, inhomogeneous initial condition (IC). Separation of variables u(x,t)=X(x)T(t) leads to

    T'T=X''X=-(nπ)2,

    and solution given as superposition of eigenfunctions of the x-BVP

    u(x,t)=n=1cnsin(nπ)e-(nπ)2t.

    Initial condition gives

    cn=01x(1-x)sin(nπx)dx.

    Integration by parts u=x(1-x), dv=sin(nπx)dxv=-cos(nπx)/(nπ)

    cn=-[x(1-x)cos(nπx)nπ]x=0x=1+1nπ01(1-2x)cos(nπx)dx.

    Again, u=(1-2x), dv=cos(nπx)v=sin(nπx)/(nπ)

    01(1-2x)cos(nπx)dx=[(1-2x)sin(nπx)nπ]x=0x=1+2nπ01sin(nπx)dx=-2(nπ)2[cos(nπx)]x=0x=1.

    Deduce

    c2k=0,c2k+1=4((2k+1)π)3.

  5. For z=x+iy, Re(z)>0 show that

    Lnz=12loge(x2+y2)+itan-1yx,

    and verify that Lnz thus defined is analytic in the right half-plane.

    Solution. From f(z)=lnz, z=reiθ, r=(x2+y2)1/2, θ=tan-1(y/x),

    f(z)=lnr+i(θ+2kπ).

    Choose principal branch k=0 and obtain above relation. Verify that Lnz=u+iv is analytic by Caucy-Riemann conditions

    ux=xx2+y2,vy=(1/x)1+(y/x)2=xx2+y2=ux?
    uy=yx2+y2,vx=-(y/x2)1+(y/x)2=-yx2+y2=-uy?

    for all points in the right half plane.

  6. Show that the real and imaginary parts of Lnz defined above are harmonic.

    Solution. As above.

  7. Determine the value of the integral

    I=1-i1+2izez2dz.

    Solution. Integrand has primitive F(z)=ez2/2 hence

    I=12[ez2]z=1-iz=1+2i=12(e1+4i-4-e1-2i+1)=12(e4i-3-e2-2i).

  8. Find the value of

    I=Cdzz2(z2+1),C:|z-i|=32.

    Solution. Integrand f(z) has simple poles at z1,2=±i, and a double pole at z3=0. The pole z1=-i is outside the contour. Apply residue formula

    I=2πi[res(f,i)+res(f,0)].

    Compute

    res(f,i)=[(z-i)1z2(z2+1)]z=i=[1z2(z+i)]z=i=-12i=i2.
    res(f,i)=[ddz(z21z2(z2+1))]z=0=-[2z(z2+1)2]z=0=0.

    Deduce I=πi.

  9. An elastic cylinder of radius R=1 is subjected to surface force f(θ,t)=cosθsin(ωt). Formulate the wave equation problem for radial displacements u(θ,t) of the cylinder surface from its equilibrium position.

    Solution. Wave equation utt=c2(u)+f in polar coordinates (r,θ) gives

    utt=c2[ur𝒆r+1ruθ𝒆θ]=c2r[r(urr)+θ(1ruθ)]=c2r2uθθ+f.

    On r=R=1 obtain, utt=c2uθθ+f, with periodic BCs u(0,t)=u(2π,t), uθ(0,t)=uθ(2π,t) and initial conditions u(θ,0)=0, ut(θ,0)=0.

  10. Solve the above problem by the separation of variables u(θ,t)=Θ(θ)T(t).

    Solution. The above is a second-order inhomogeneous PDE. Solve by expanding both u(θ,t) and f(θ,t) on the eigenfunctions of the homogeneous PDE {12,cosθ,sinθ,,cos(nθ),sin(nθ),}

    u(θ,t)=12a0(t)+n=1[an(t)cos(nθ)+bn(t)sin(nθ)],f(θ,t)=sin(ωt)cosθ
    utt=12a0''(t)+n=1[an''(t)cos(nθ)+bn''(t)sin(nθ)],
    uθθ=-n=1n2[an(t)cos(nθ)+bn(t)sin(nθ)]

    Since the eigenfunctions are orthogonal obtain ODE system

    a0''=0,a1''=-c2a1+sin(ωt),
    an''=-c2an,bn''=-c2bn,n>1.

    Applying initial conditions leads to only one none-zero term, a1(t).