
MATH529 Lesson 01
Ordinary Differential Equations Review

Basic mathematical concepts

Sets

Sets are collections of objects. The sets of interest within this course are , , , , the sets of 

naturals, integers, reals, and complex numbers, respectively. The basic operation arising in set 

theory in membership, for instance 4 ∈ , stating that the number four is an integer. 

I n [ ] : = 4 ∈ Integers

Ou t [ ] =

True

In fact the number 4 is a natural, or a positive integer.

I n [ ] : = 4 ∈ Integers && 4 > 0

Ou t [ ] =

True

If all elements of A are also members of B, then A ⊂ B.  Since ⊂⊂⊂, the number 4 is also a real.

I n [ ] : = 4 ∈ Reals

Ou t [ ] =

True

The integers are a proper subset of the reals, i.e., there exist reals that are not integers, such as .

I n [ ] : = π ∈ Reals

Ou t [ ] =

True



I n [ ] : = π ∈ Integers

Ou t [ ] =

False

Given two sets X, Y  the Cartesian product XY  is defined as the set of all pairs (x, y)  with x∈X , y∈Y. 

For example × contains pairs of reals, identified with the real plane and denoted as 2. Similarly 

3
 denotes three-dimensional real space. 

Within the real or complex numbers, a neighborhood of x is a set of numbers within some distance, 

N (x, ϵ)  y, y - x < ϵ .

Equations

Recall that within the real plane 2
 the first bisector corresponds to those points in the plane have 

equal abscissa and ordinate values, x  y .  The set of such points is a subset of 2. 

I n [ ] : = 1  2

Ou t [ ] =

False

I n [ ] : = 2  2

Ou t [ ] =

True

I n [ ] : = 2  Sqrt[4]

Ou t [ ] =

True

Constants and variables

Within some problem certain quantities are assumed to be fixed as in the parabola relationship 

y  a x2, where a is assumed to be a constant, whereas x, y can take a range of values and are 

considered to be variables. The distinction between constants and variables is problem depen-

dent. In the parabola definition x can take on any value, and is said to be an independent variable, 

whereas y results from the parabola definition and is said to be a dependent variable.
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I n [ ] : = x  y

Ou t [ ] =

x  y

Note that in the above statement, the expression does not evaluate to either True or False, since 

x, y are variables. A numeric value for a constant can be specified through a substitution operation.

I n [ ] : = a /. a  2

Ou t [ ] =

2

I n [ ] : = y  a x2 /. a  2

Ou t [ ] =

y  2 x2

Functions

A function f  from set X  to set Y  is a subset of XY  in which there is no repetition of the first 

element of the pair (x, y) , and is denoted as f : X → Y.

I n [ ] : = f[x_] = 2 x2

Ou t [ ] =

2 x2

I n [ ] : = f[2]

Ou t [ ] =

8
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I n [ ] : = Plot[f[x], {x, -2, 2}]

Ou t [ ] =

-2 -1 1 2

2

4

6

8

Of main interest in this course are real functions f :  → , and complex functions w : → . A 

function is continuous if it maps small neighborhoods into small neighborhoods, as the parabola 

above. Conversely the step function is not continuous since arbitrarily small neighborhoods of 

zero are mapped into the [0,1] interval

I n [ ] : = Plot[HeavisideTheta[t], {t, -1, 1}]

Ou t [ ] =

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Differentiation

Real functions that finitely map arbitrarily small neighborhoods into small neighborhoods are 

differentiable:
f ′(x0)  limxx0

f (x)- f (x0)

x-x0
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I n [ ] : = f[x]

Ou t [ ] =

2 x2

I n [ ] : = D[f[x], x]

Ou t [ ] =

4 x

I n [ ] : = f'[x]

Ou t [ ] =

4 x

For real functions  f :  → , the derivative is the slope of the tangent to function graph.

I n [ ] : = VectorPlot[{1, f'[x]}, {x, 0, 1}, {y, 0, 1}]

Ou t [ ] =

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Rather than explicitly defining a function such as f (x)  4 x2, the function could be defined in 

terms of its slope within the real plane, f ′ (x)  4 x. Starting from some arbitrary point in the 2
 

plane one can reconstruct the function by following the direction of the local slope.
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I n [ ] : = VectorPlot[{1, f'[x]}, {x, 0, 1},
{y, 0, 1}, StreamPoints  Medium, StreamScale  Full]

Ou t [ ] =

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
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I n [ ] : = StreamPlot[{1, f'[x]}, {x, 0, 1}, {y, 0, 1}, StreamScale  None]

Ou t [ ] =

The rate of change of the rate of change is given by the second derivative, e.g., f ′ (x)  4

I n [ ] : = D[f[x], {x, 2}]

Ou t [ ] =

4

Differential equations
Differential equations are relationships among the rates of change, i.e., derivatives of a function. 

Various rates of change, i.e., order of differentiation can be specified. The order of a differential 

equation is the highest order of differentiation that arises

Ordinary differential equations (ODEs)

Differential equations for functions of a single variable are said to be ordinary.

Explicit form

An ordinary differential equation is said to be given in explicit form if the highest-order derivative 

is a known expression of the lower order derivatives
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y(k)  f x, y, y′, y′′, ..., y(k-1)

I n [ ] : = f[x_, y_] = x + y

Ou t [ ] =

x + y

I n [ ] : = sp = StreamPlot[{1, f[x, y]}, {x, -1, 1}, {y, -1, 4}]

Ou t [ ] =

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

3

4

I n [ ] : = DSolve[y'[x]  f[x, y[x]], y[x], x]

Ou t [ ] =

{{y[x]  -1 - x + 
x
1}}

 Solve y'=x+y

I n [ ] : = DSolve[y′
[x]  x + y[x], y[x], x]

Ou t [ ] =

{{y[x]  -1 - x + 
x
1}}
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I n [ ] : = sol = DSolve[{y'[x]  f[x, y[x]], y[0]  1}, y[x], x]

Ou t [ ] =

{{y[x]  -1 + 2 
x
- x}}

I n [ ] : = yp = Plot[y[x] /. sol〚1, 1〛, {x, -1, 1}]

Ou t [ ] =

-1.0 -0.5 0.5 1.0

1.0

1.5

2.0

2.5

3.0

3.5

I n [ ] : = Show[{yp, sp}]

Ou t [ ] =

-1.0 -0.5 0.5 1.0

1.0

1.5

2.0

2.5

3.0

3.5

Implicit form

Conversely, if the highest order derivative has not been isolated, the ordinary differential equa-

tion is said to be given in implicit form

f x, y, y′, y′′, ..., y(k)  0
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 Solve sin(x+y')=y

I n [ ] : = DSolve[Sin[x + y′
[x]]  y[x], y[x], x]

Solve : Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete

solution information.

Solve : Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete

solution information.

Ou t [ ] =

DSolve[Sin[x + y′
[x]]  y[x], y[x], x]

Systems of differential equations

Relationships between rates of change of multiple functions lead to systems of differential 

equations.

 Solve z'=x + y, y'=x-z

I n [ ] : = DSolve[{z′
[x]  x + y[x], y′

[x]  x - z[x]}, {y[x], z[x]}, x]

Ou t [ ] =

{{y[x]  1 Cos[x] - 2 Sin[x] - Sin[x] (Cos[x] + x Cos[x] - Sin[x] + x Sin[x]) +

Cos[x] (Cos[x] - x Cos[x] + Sin[x] + x Sin[x]),
z[x]  2 Cos[x] + 1 Sin[x] + Cos[x] (Cos[x] + x Cos[x] - Sin[x] + x Sin[x]) +

Sin[x] (Cos[x] - x Cos[x] + Sin[x] + x Sin[x])}}

I n [ ] : = sol =

DSolve[{z′
[x]  x + y[x], y′

[x]  x - z[x], z[0]  1, y[0]  2}, {y[x], z[x]}, x]

Ou t [ ] =

y[x]  Cos[x] + Cos[x]2 - x Cos[x]2 + Sin[x]2 - x Sin[x]2,

z[x]  Cos[x]2 + x Cos[x]2 + Sin[x] + Sin[x]2 + x Sin[x]2
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I n [ ] : = Plot[{y[x], z[x]} /. sol〚1〛, {x, 0, 2}]

Ou t [ ] =

0.5 1.0 1.5 2.0

-1

1

2

3

4

Linear differential equations

An equation y(k)  f x, y, y′, y′′, ..., y(k-1) is linear if f  is linear in the dependent variable and its 

derivatives, e.g., for k  1, y′  f (x, y)  is linear if f (x, a1 y1 + a2 y2)  a1 f (x, y1) + a2 f (x, y2) for 

any reals a1, a2

Partial differential equations (PDEs)

Specifying rates of change of a function with respect to multiple independent variables leads to a 

partial differential equation. For PDEs, it is convenient to denote differentiation by subscripts. Of 

special relevance to study of PDEs are the simplest forms that arise, known as the canonical PDEs.

Canonical PDEs

Heat (diffusion) equa1/2A_0+tion

The diffusion equation ut  α ux x  describes the evolution of some concentration u(t, x) due to 

unresolved microscopic processes (random motion).

Poisson equation

The Poisson equation ux x + uy y  f (x, y) describes the stable equilibrium concentration of some 

quantity u under the effect of the external forces f .
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Wave equation

The wave equation ut t  c2 ux x describes the propagation of waves with speed c, with u(t, x) indicat-

ing the displacement from equilibrium.

Initial value problem

Development of differential equation theory is guided by analysis of generic cases. The first 

generic case is that of first-order differential equations given in explicit form with an initial condi-

tion, known as the initial value problem (IVP) 
y ' = y /  x = f(x, y), y(x0) = y0

A unique solution exists over some interval R = (x0, x1) × (y0, y1) if f is continuous over , and the 

derivative of  f is continuous on . (a weaker sufficient condition is Lipschitz continuity in depen-

dence of f on y)

An example of an IVP with multiple solutions

y ' = y /  x = x y1/2, y(0) = 0, f(x, y) = x y1/2

∂ f / ∂y = x  2 y1/2 

DSolvey'[x]  x (y[x])1/2, y[0]  0, y[x], x

Ou t [ ] =

y[x] 
x4

16


I n [ ] : = DE = y'[x]  x (y[x])1/2

Ou t [ ] =

y′
[x]  x y[x]

I n [ ] : = sol = DSolve[{DE, y[0]  0}, y[x], x]〚1, 1〛

Ou t [ ] =

y[x] 
x4

16
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I n [ ] : = dsol = y'[x]  x3  4

Ou t [ ] =

y′
[x] 

x3

4

I n [ ] : = Assuming[x > 0, Simplify[DE /. {sol, dsol}]]

Ou t [ ] =

True

I n [ ] : = {a, b} /. { a  1, b  2}

Ou t [ ] =

{1, 2}

Separable first-order equations

The ODE y ' = y /  x = f(x, y) is separable if f(x, y) = g(x) / h(y), and is solvable by direct integra-

tion

∫h(y)  y = ∫g(x)  x + C

Example: y ' = y /  x = y / (1 + x ) ⇒
 y
y

=
 x
1+x

⇒ log (y) = log (1 + x) + log (C) ⇒ y(x) = C(1 + x)

I n [ ] : = DSolve[y'[x]  y[x] / (1 + x), y[x], x]

Ou t [ ] =

{{y[x]  (1 + x) 1}}

Implicit solutions

cos x e2 y - y y
x

= ey sin 2 x ⇒
e2 y-y
ey

 y =
sin 2 x
cos x

 x

I n [ ] : = ysol = Integrate[(Exp[2 y] - y) / Exp[y], y]

Ou t [ ] =


y
- 

-y
(-1 - y)
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I n [ ] : = xsol = Integrate [Sin[2 x] / Cos[x], x]

Ou t [ ] =

-2 Cos[x]

I n [ ] : = ysol  xsol + c

Ou t [ ] =


y
- 

-y
(-1 - y)  c - 2 Cos[x]

I n [ ] : = g[x_, y_] = xsol - ysol

Ou t [ ] =

-
y
+ 

-y
(-1 - y) - 2 Cos[x]

I n [ ] : = ContourPlot[g[x, y], {x, -3, 3}, {y, -3, 3},
ContourShading  None, Contours  Table[c, {c, -10, 10}]]

Ou t [ ] =

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Linear first-order equations

Development of differential equation theory is guided by analysis of generic cases. The first 

generic case is that of first-order differential equations given in explicit form with an initial condi-

tion, known as the initial value problem (IVP) 
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y ' = y /  x = f(x, y), y(x0) = y0

A unique solution exists over some interval R = (x0, x1) × (y0, y1) if f is continuous over , and the 

derivative of  f is continuous on . (a weaker sufficient condition is Lipschitz continuity in depen-

dence of f on y)

Basic theory

The first-order differential equation h(x, y, y ') = g(x) is linear if h is a linear mapping in y, in which 

case the equation can be written as h(x, y, y ') = a1 (x) y
′ + a0 (x) y  g (x), with a1 (x) ≠ 0, or

L (y) = a0(x)


x
+a1(x) y = a0(x)

y
x

+ a1(x) y = g(x)

where L is the differential operator associated with the equation.

Recall that, in general, a function F is a linear mapping iff F(c1 t1 + c2 t2) = c1 F(t1) + c2 F(t2). For the 

above,

L (c1 y1 + c2 y2)  a0 (x) (c1 y1 + c2 y2) + a1 (x)
d

d x
(c1 y1 + c2 y2) 

 c1 a0 y1 + c1
d y1

d x
+ c2 a0 y2 + c2

d y2

d x


 c1 L (y1) + c2 L (y2)

If g (x)  0 the ODE is said to be homogeneous

A linear first-order ODE can be written in standard form as
y′ + p (x) y  q (x)

Examples

A linear ODE

Q: Is the equation y′ + x y  x2 linear in y?

A: Yes. The function h (x, y, y′)  y′ + x y is linear in y. Verify:

h (x, c1 y1 + c2 y2, c1 y1
′ + c2 y2

′ )  (c1 y1 + c2 y2)
′ + x (c1 y1 + c2 y2) 

 c1 (y1
′ + x y1) + c2 (y2

′ + x y2)  c1 h (x, y1, y1
′ ) + c2 h (x, y2, y2

′ )
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A nonlinear ODE

Q: Is the equation y′ + x sin y  x2  linear in y?

A: No, h (x, y)  y′ + x sin y is nonlinear in y.

Solution by variation of parameters

The solution to a linear ODE can be written as the solution to the homogeneous equation plus a 

particular solution to the original DE.

1. Solve the homogeneous equation y′ + p (x) y  0, and obtain yh (x).

2. Assume constant of integration becomes a parameter that depends on the independent variable 

(“variation of parameters”), and find a particular solution. 

Example

Solve y′ + x y  ex

Step 1: Solve homogeneous equation y′ + x y  0

I n [ ] : = DE = y'[x] + x y[x]  ex

Ou t [ ] =

x y[x] + y′
[x]  ex

I n [ ] : = solh = DSolve[y'[x] + x y[x]  0, y[x], x]〚1, 1〛

Ou t [ ] =

y[x]  
-
x2

2 1

I n [ ] : = yh[x_] = y[x] /. solh

Ou t [ ] =


-
x2

2 1

Step 2.  Assume constant of integration becomes a parameter

I n [ ] : = yp[x_] = yh[x] /. 1  A[x]

Ou t [ ] =


-
x2

2 A[x]
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I n [ ] : = DEp = DE /. y  yp

Ou t [ ] =


-
x2

2 A′
[x]  ex

I n [ ] : = vpsol = DSolve[DEp, A[x], x]〚1, 1〛

Ou t [ ] =

A[x]  1 + 
-
1

2
Log[e]2 π

2
Erfi

x + Log[e]

2


I n [ ] : = ys[x_] = yp[x] /. vpsol

Ou t [ ] =


-
x2

2 1 + 
-
1

2
Log[e]2 π

2
Erfi

x + Log[e]

2

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