
MATH529: L10 Orthogonal series expansions

Overview

� Orthogonal series



Robin boundary condition problem

� Consider heat conduction PDE kuxx=ut for 0<x< 1; t > 0, with BCs

u(0; t)= 0; hu(1; t)+ux(1; t)= 0; u(x; 0)= 1

� Separation of variables u(x; t)=X(x)T (t) leads to Sturm-Liouville

X 00+�2X =0; X(0)= 0; X 0(1)+hX(1)= 0:

Boundary conditions of form aux+u=0 are known as Robin BC's.

� Non-trivial solutions of Sturm-Liouville problem X(x)= c1 cos�x+ c2 sin�x,

X(0)= 0) c1=0; X 0(1)+hX(1)= 0)� cos�+h sin�=0) tan�=−�
h



Orthogonal series

� The equation tan�=−�/h has an infinite number of roots denoted �n

� Note that in contrast to sin �L=0) �n=n�/L, the solutions �n are not integer multiples
of �/L, hence lead to the formation of a new series of orthogonal functions different from
the Fourier series
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Neumann condition problem

� Consider wave equation a2uxx=utt with BCs

u(0; t)= 0; ux(1; t)= 0; u(x; 0)=x; ut(x; 0)=0

� Separation of variables leads to X 00+�2X =0;X(0)=0; X 0(1)=0 and T 00+ a2�2T =0.
Apply BCs to X(x)= c1 cos�x+ c2 sin�x

X(0)= 0) c1=0; X 0(1)= 0) cos�=0)�n=
(2n− 1)�
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Again, this an orthogonal but not Fourier series since �n is not an integer multiple of a
constant.



Orthogonal series

� Solution
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� Apply initial conditions u(x; 0)=x; ut(x; 0)= f(t)
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Multiple spatial dimensions

� Consider kut= uxx+uyy=r2u=Mu=div (gradu)=r�ru

� Separation of variables u(t; x; y)=T (t)X(x)Y (y)
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