Fourier integral
Fourier transforms:
General Fourier transform
Sine and cosine transforms
Finite Fourier transform
Fast Fourier transform
Fourier analysis of PDE solutions
Often used for steady-state problems
Recall f(t+T)=f(t)
The Fourier coefficients Ak,Bk are obtained as scalar products
By analogy define a Fourier transform
F(α)=ℱ{f(x)}=∫-∞∞f(x)⁡ei⁡α⁡xdx,f(x)=ℱ-1(F(α))=∫-∞∞F(α)⁡e-i⁡α⁡xdα
Evaluate ℱ{f'(x)}
Impose condition of f to allow Fourier transform
ℱ{f'(x)}=-i⁡α⁡F(α), ℱ{f''(x)}=-α2⁡F(α), ℱ{f'''(x)}=i⁡α3⁡F(α)
Cosine transform, inverse cosine transform
Sine transform, inverse sine transform
Fc(α)=ℱc{f(x)}=∫0∞f(x)⁡cos⁡α⁡x⁡dx
Evaluate ℱc{f'(x)}
Fs(α)=ℱs{f(x)}=∫0∞f(x)⁡sin⁡α⁡x⁡dx
Evaluate ℱs{f'(x)}=∫0∞f'(x)⁡sin⁡α⁡x⁡dx=∫0∞⁡sin⁡α⁡x⁡df(x)
Evaluate ℱs{f''(x)}
Heat equation
Fourier transform ℱ{u}=∫-∞∞u(x,t)⁡ei⁡α⁡x⁡dx=U(α,t),
Inverse Fourier transform