Fourier transform solution of PDE BVPs
Fourier transform
Inverse Fourier transform
Composition of direct and inverse
Real, imaginary parts, f:ℝ→ℝ
Cosine transform, inverse cosine transform
Sine transform, inverse sine transform
F(α)=ℱ{f(x)}=∫-∞∞f(x)⁡ei⁡α⁡xdx
Evaluate ℱ{f'(x)}
Impose condition of f to allow Fourier transform
ℱ{f'(x)}=-i⁡α⁡F(α), ℱ{f''(x)}=-α2⁡F(α), ℱ{f'''(x)}=i⁡α3⁡F(α)
Fc(α)=ℱc{f(x)}=∫0∞f(x)⁡cos⁡α⁡x⁡dx
Evaluate ℱc{f'(x)}
Fs(α)=ℱs{f(x)}=∫0∞f(x)⁡sin⁡α⁡x⁡dx
Evaluate ℱs{f'(x)}=∫0∞f'(x)⁡sin⁡α⁡x⁡dx=∫0∞⁡sin⁡α⁡x⁡df(x)
Evaluate ℱs{f''(x)}
Heat equation
Fourier transform ℱ{u}=∫-∞∞u(x,t)⁡ei⁡α⁡x⁡dx=U(α,t),