MATH529: L21 € integration

Overview

e Bounding integral values
e Cauchy-Goursat theorem

e Cauchy’s integral formulas



Integral bounds

e If f continuous on smooth curve C and |f(z)| < M for Vz € C then

/C () dz

<ML

with L the curve length
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Cauchy-Goursat theorem: Domains

e Consider contour integrals, i.e., integrals over a simple closed curve C' [ = fﬁcf(z) dz,
r(t)=x(t)e. +y(t)e, T=7r'(t), fila, 0] =R, f(a,b) =R

e Recall: a domain in C is an open and connected set within C

— a domain is simply connected if any contour can be shrunk to a point without leaving
the domain (domain has no “holes”)

— otherwise the domain is multiply connected, e.g., doubly connected, triply connected, etc.
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Circulation, flux, Green's theorem

e Closed curve C:r(s), tangent, normal vectors £(s), n(s),
[iC—C, f=u+iv, v=ue,+ve, v:R*— R?
— I'=¢ v(x(s),y(s))-t(s)ds is the circulation of v on curve C.

]{ w(x(s), y(s)) £(s) ds = ]{udx+vdy

& C

— &=4¢ v(x(s),y(s)) n(s)ds is the flux of v across curve C.

j[v(x(s), y(s))n(s)ds= j{udy —vdx

C

— InC:V=T+i®=¢ (u—iv)(dz+idy)=¢_ f(2)dz,
= Re(V), ® = Im(V)

e Green's theorem



Cauchy theorem

Theorem If f is analytic in a simply connected domain D C ©C and f' is continuous then
I=¢,.f(z)dz=0 for any contour C' within D.

$.f(2)dz= ¢, [u+iv]d(x +iy) =

jéf(z) dz = j{j[udx _vdy +z’j€j[vdx udy].

Green's theorem: for p, ¢ and first derivatives p,, ¢, continuous
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But Cauchy-Riemann =u, = v,, u, = —v, .




Cauchy-Goursat

e Continuity of f’ not required

Theorem. If f is analytic in a simply connected domain D C C then I = 3@0 f(z)dz=0 for
any contour C' within D.
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Cauchy'’s integral formulas: for the function

e f analytic in domain D, and C' a simple closed contour in D

Flao) = ¢ L)L g (1)
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e Proof: Let C. be circle of radius ¢ around zj
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Cauchy integral formula for derivatives

e f analytic along with derivatives up to order n in domain D, and C' a simple closed contour
in D

f(n)(z()) _ n!.]{c f(2> dz (2)

216 J o (2 — zp)n
e Examples:
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