

Overview

- \bullet Sequences and series in $\mathbb C$
- Taylor series

- Sequence $\{z_n\}$ converges to $L \in \mathbb{C}$ iff $\operatorname{Re} z_n \to \operatorname{Re} L$ and $\operatorname{Im} z_n \to \operatorname{Im} L$
- $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, s.t. n > n_{\varepsilon}, |z_n L| < \varepsilon, z_n = x_n + iy_n, L = M + iN$

$$|z_n - L| = [(x_n - M)^2 + (y_n - N)^2]^{1/2}$$

- Examples:
 - $-z_n = 5i^n$, Convergent? No
 - $-z_n = 1 + e^{n\pi i}$, Convergent? No
 - $-z_n = \frac{n+i^n}{\sqrt{n}}$, Convergent? No
 - $-z_n=\frac{i^n+1}{n+i}$, Convergent? Yes
- Motivation for sequences: ensure closure of \mathbb{R} , $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$, $x_n = \left(1 + \frac{1}{n}\right)^n \to e$

• The series $\sum_{k=1}^{\infty} z_k$ is *convergent* if the sequence of partial sums S_n converges

$$S_n = \sum_{k=1}^n z_k, \{S_n\}_{n \in \mathbb{N}}$$

• The geometric series $\sum_{k=1}^{\infty} z^{k-1}$ converges to 1/(1-z) when |z|<1

$$S_n = \sum_{k=1}^n z^{k-1} = 1 + z + \dots + z^{n-1} = \frac{1 - z^n}{1 - z} \to \frac{1}{1 - z}$$

Note that

$$\frac{1}{1-z} = 1 + z + \dots + z^{n-1} + \frac{z^n}{1-z}$$

of interest in applications of Cauchy's integral formula $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$

- If $\sum_{k=1}^{\infty} z_k$ converges then $\lim_{n\to\infty} z_n = 0$
- If $\lim_{n\to\infty} z_n \neq 0$ then $\sum_{k=1}^{\infty} z_k$ diverges
- $\sum_{k=1}^{\infty} z_k$ is absolutely convergent if $\sum_{k=1}^{\infty} |z_k|$ is convergent
- Ratio test: series $\sum_{k=1}^{\infty} z_k$, with terms such that $\lim_{n\to\infty} |z_{n+1}/z_n| = L$:
 - i if L < 1 series is absolutely convergent
 - ii if L>1 (including $L=\infty$) series is divergent
 - iii if L=1 is inconclusive
- Root test: series $\sum_{k=1}^{\infty} z_k$, with terms such that $\lim_{n\to\infty} |z_n|^{1/n} = L$:
 - i if L < 1 series is absolutely convergent
 - ii if L>1 (including $L=\infty$) series is divergent
 - iii if L=1 is inconclusive

• As presaged by Cauchy's formula's power series are of particular interest

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k$$

- z_0 is the center of the series
- Ratio test on $\sum_{k=1}^{\infty} z^{k+1}/k$, absolutely convergent for |z| < 1

$$L = \lim_{n \to \infty} \frac{|z^{n+2}/(n+1)|}{|z^{n+1}/n|} = \lim_{n \to \infty} \frac{n}{n+1}|z| = |z|$$

- Circle of convergence: series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$, $L = \lim_{n\to\infty} |a_{n+1}/a_n|$
 - i if $L \neq 0$ series has radius of convergence R = 1/L, $|z z_0| < R$
 - ii if L=0 series converges everywhere $R=\infty$
 - iii if $L = \infty$ radius of convergence is R = 0

- $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ represents a continuous function f for $|z-z_0| < R$, $R \neq 0$
- Term-by-term integration is possible for any contour C within $|z-z_0| < R \neq 0$
- Term-by-term differentiation is possible within $|z-z_0| < R \neq 0$
- $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$ is analytic for $|z-z_0| < R$, $R \neq 0$

$$f'(z) = \sum_{k=1}^{\infty} k a_k (z - z_0)^{k-1}, f''(z) = \sum_{k=2}^{\infty} k(k-1) a_k (z - z_0)^{k-2}$$

$$f(z_0) = 0!a_0, f'(z_0) = 1!a_1, f''(z_0) = 2!a_2, \dots$$

• Taylor's theorem $f: D \to \mathbb{C}$, f analytic in D, $z_0 \in D \subset \mathbb{C}$

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$