MATH529: L23 Taylor series

Overview

e Taylor series
e Laurent series

e Singularities, zeros, and poles



Taylor series 2/11

o A power series Y = a,(z — z,)" represents a continuous function f: C — C within its
radius of convergence |z — 29| < R, R+ 0

e The power series can be differentiated and integrated term-by-term within |z — 2| < R, R+0

e f:D— C analytic, zo € D can be represented by the Taylor series
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Taylor series in € proof (basic facts)

e Algebraic identity
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e Cauchy’s integral formulas
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Taylor series in € (proof)

[ ) f(Z) = ZZOZO ak(z — Z())k = ZOZO %(z - Zo)k

e Start from Cauchy-Goursat
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o Recall geometric series, —— =1+ (" 14 =225
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Taylor series proof (cont)

e After expansion using polynomial factorization identity

F(z) = ]{(f(s) 1+z_z°+---+<z_zo)nl+<jzg) ds=>
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Laurent series

e f:D— C analyticin D:r < |z — z9| < R has the series representation
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where coefficients are defined as

ay = 17{ f(z)dz k=0,+1,...,
o
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with C' a contour within D.



Laurent series proof

e Choose ri, Ryst:r<ri<Ry<R
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Laurent series proof

1. Integral over (5 is treated similarly to Taylor series proof

1 f(s)ds 1 ]{ f(s)ds
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1 F(s)ds S o ,
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2. Integral over 'y is analogous, but you factor out a different term
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Singularities

e Points at which f: C — C is not analytic are singularities of the function, e.g.

fi(z) = ! is singular at 7, fo(2) =log zissingular forIm z=0,Re 2 <0
22+1

e A singularity zg is isolated if there exists I? such that f analytic for
0<|z—z0|<R
e A singularity zq is not isolated if every neighborhood contains another singularity
2o = 0is not an isolated singularity of f(z)=1log 2

e A series representation is possible for f with isolated singularities



Zeros and poles

f(z)=0, then z is a zero of f

The function f(z)=p(z)/q(z) has a pole at z if ¢(z) has a zero at =

The order of the pole is the number of time 2 is a repeated root

Laurent series of functions with &' order poles have terms up to the power z

Define two parts of the Laurent series: f(2)=>"" _ a;(z— )
— Principal part: Z,:i_oo ar (2 —20)F =>"," a_p(z — z) 7"

— Taylor part: Y aj (2 — 2)"
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Isolated singularity classification

e If principal part is zero, 2 is a removable singularity

e If principal part has a finite number of terms n, 2, is a pole of order n
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e A pole of order 1 is a simple pole
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