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The theory of the scattering of plane waves of sound by isotropic circular cylinders and spheres is extended 
to take into account the shear waves which can exist (in addition to compressional waves) in scatterers of 
solid material. The results can be expressed in terms of scattering functions already tabulated. Scattering 
patterns computed on the basis of the theory are shown to be in good agreement with experimental measure- 
ments of the distribution-in-angle of sound scattered in water by metal cylinders. Rapid changes with 
frequency in the distribution-in-angle of the scattered sound and in the total scattered energy are found to 
occur near frequencies of normal modes of free vibration of the scattering body. 

I. INTRODUCTION 

HE scattering of sound was first investigated 
mathematically by Lord Rayleigh. t However, 

because of the complexity of the mathematical solution, 
he only considered the limiting case where the scatterers 
are small compared with the wavelength. The solution 
for scattering by rigid, immovable circular cylinders and 
spheres, not necessarily small compared with the wave- 
length, was given in convenient form by Morse, who 
defined and tabulated values of phase-angles associated 
with the partial scattered waves, in order to simplify the 
complicated dependence on bessel functions. • Although 
most solid scatterers in air can be considered rigid and 
immovable, it is valid only in a few special cases to 
assume that a scatterer in a liquid medium is rigid and 
immovable. In general, the sound waves which pene- 
trate the scatterer must be taken into account, as they 

* This paper contains the essential results of a thesis submitted 
to the Faculty of Harvard University in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy. This research 
has been aided by funds made available under a contract with the 
ONR. 

' Lord Rayleigh, The Theory of Sound (Dover Publications, New 
York, 1945), first American edition. 

• P.M. Morse, Vibra//on and Sound (McGraw-Hill Book 
Company, New York, 1936), first edition, and (1948), second 
edition. 

can have a considerable effect on the distribution-in- 

angle of the scattered sound and on the total scattered 
energy. Morse, with Lowan, Feshbach, a.nd Lax, later 
extended his solution to include the effects of com- 

pressional waves inside (fluid) cylindrical and spherical 
scatterers. a These results are also given in convenient 
form in terms of several additional phase-angles whose 
values are tabulated. The object of the research reported 
here has been to study sound scattering by cylinders and 
spheres of solid material (which will support shear waves 
in addition to compressional waves). The mathematical 
solution will be given first, after which experimental 
apparatus and results will be described. 

II. THE MATHEMATICAL SOLUTION 

List of Symbols 

Most of the symbols used here are, in the appropriate 
sections of the analysis, the same as those used by Love 
and those used by Morse: 

a = radius of cylinder or sphere; 
a •, b •, c • = expansion coefficients; 

a Mathematical Tables Project and M.I.T. Underwater Sound 
Laboratory, Scattering and Radiation pom Circular Cylinders and 
Spheres (U.S. Navy Department, Office of Research and In- 
ventions, Washington, D.C., 1946). 
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= vector displacement potential; 
= z-component of vector potential; 
= 4)-component of vector potential; 
=velocity of compressional waves in the 

scatterer; 
= velocity of shear waves in the scatterer; 
= velocity of sound in the fluid surrounding the 

scatterer; 
= Young's modulus; 
=(-1)•; 
= spherical bessel function of the first kind; 
= bessel function of the first kind; 
=•o/c•; 
= ,o/c2; 
= ,o/c3; 
= order integer; 
= spherical bessel function of the second kind 
= bessel function of the second kind; 
= pressure; 

= pressure in incident wave; 
= pressure in scattered wave; 
= Legendre polynomial; 
= amplitude of pressure in incident wave; 
= cylindrical coordinates; 
= spherical coordinates; 

[rr], [-rO], [rz] = stress components in cylindrical coor- 
dinates; 

['rr], [rO], [r•] = stress components in spherical coordi- 
nates; 

t = time; 
u = displacement; 
ur, uo = components of displacement in the solid; 
u•.• =radial component of displacement in inci- 

dent wave; 
u•., =radial component of displacement in scat- 

tered wave; 
x, y, z = rectangular coordinates; 

xo_ = k2a ; 
x3 = kaa; 
a•, fi,,,/L,,/5,/, •, •= scattering phase-angles; 
A = dilatation; 
• =Neumann factor; •0 = 1; •=2, n>0; 
X, • = Lam• elastic constants; 
2• = rotation; 
ot = density of the scatterer; 
Oa = density of the fluid surrounding the scatterer; 
• = Poisson's ratio; 
• • = boundary impedance scattering phase-angle; 
,I• = scalar displacement potential; 
•o = angular frequency (2•rf). 

Scattering by Solid Circular Cylinders 

Plane waves of sound of frequency •o/2r in a fluid 
medium are incident upon an infinitely long circular 
cylinder of some isotropic solid material. Let the axis of 
the cylinder coincide with the z-axis of a rectangular 
coordinate system, and let the plane wave approach the 

cylinder along the negative x-axis, as shown in Fig. 1. 
As in the solutions given previously for rigid and fluid 
scatterers) -a the wave motion external to the scatterer 
is assumed to consist of the incident plane wave and an 
outgoing scattered wave. It is desired to find the 
amplitude of the scattered wave as measured at large 
distances from the cylinder. The mathematical expres- 
sions for displacement and dilatation inside and for 
pressure and displacement outside the cylinder will be 
found in general form first, after which the application 
of the proper boundary conditions at the surface of the 
cylinder will lead directly to the solution. 

The waves inside the cylinder will be represented by 
suitable solutions of the equation of motion of a solid 
elastic medium, which may be written 4 

(x+ 2)VA-- (2a) = pOu/Ot 

Fro. 1. Choice of coordinate axes for scattering by cylinders. 

where 

a = V. u (2) 
and 

2a=VXu. 

From Eq. (1) can be derived the equations, 

V"a = (m/X+ 2•) O2a/Ot ø- (3) 
and 

w(2a) = (pt/la)Oø-(2&)/Ol (4) 

which define the wave velocities 

c•= E(x-l-2u)/p,3 •= [E(1- a)/m(lq-•)(1- 2,)3 • (5) 
and 

c2= (•/p,)i= [-E/2m(lq-.)-]t. (6) 

Solutions of Eq. (1)can be found by assuming that the 

• A. E. H. Love, A Treatise on the Mathematical Theory of 
Elasticity (Dover Publications, New York, 1944), fourth edition, 
p. 141. 
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displacement can be derived from a scalar and a vector 
potential: 

u-- - vx A. (7) 

The displacement thus can be thought of as the sum of 
two displacements, one associated with compressional 
waves and the other with shear waves. If we assume that 

the potentials satisfy the equations, 

V• = (1/c,90•'I•/Ot 2 (S) 
and 

•A = (1/ce)OaA/ot • (9) 

we c•n show that A(= V- (-- V•)) satisfies Eq. (3), and 
that 2fi(=VXVXA) satisfies Eq. (4). That •e• 
a•umptions do lead to a valid solution of Eq. (1) may 
be •en by noting that the solutions we shall obtain 
satisfy Eq. (1) by direct substitution. If we now change 
to a •lindrical coordinate system defined by 

x= r cos0, y= r sin0, : = z, 

it can be seen that pressure and disp•ment must be 
s•metri•l about 0=0 (the direction oI the positive 
x-•xis). Moreover, because the cylinder is of h•ite 
length, and the incident plane wave of infinite extent, 
there can be no dependence on z, and it is logical to 
•ssume that there is no displacement in the -.-direction. 
Subject to the• conditions, the solution of Eq. (8) •n 
be written 

•= • a•J•(kff) cosn0. (10) 
•0 

(The time dependence factor exp(j•t) will be unde•tood 
in all the expressions repre•nting waves.) Examination 
of Eq. (9) shows that, subject to the conditions dis- 
cus•d above, •e vector potentel c•n have no com- 
ponent h •e r- or the O-direction. The vector Eq. (9) 
then reduces to a sca•r equation in A •, and its solution 
can be written 

A,= • b•J•(k•r) sinn0. (11) 

Only sine terms appear here, becau• the vector po- 
tenthl must be anti-symmetrical about 0=0 in order 
that the displacement derived from it shall be sym- 
metrical about 0=0. Now, by Eqs. (7) and (2), 

and 

• I-ha. d 1 

,,= (13) 

A = k• • •.• a.J,(k•r) cosn0. (14) 

The waves in the fluid surrounding the cylinder will 
be represented by suitable solutions of the wave equa- 

tion for a (nonviscous) fluid medium, which can be 
written 

Up = (11c•') O'pl 

The incident plane wave is represented by s 

Pi = Po exp(--jkax)= Po exp(--jkar cos0) 

= Po E cosn0. (lS) 
•-•0 

The radial component of displacement associated with 
this wave is 

ui.,= (1/ pao•a)Opd Or 

= e,(--j)'--J,(kar) cosn0. (16) 
pao• • .=o dr 

The outgoing scattered wave must be symmetrical 
about 0= 0 and therefore of the form 

p.= cosn0. 

The radial component of displacement associated with 
this wave is 

1 d 

pa• a •-a dr 

The factors c, are the unknown coefficients which must 
be evaluated. 

The following boundary conditions are applied at the 
surface of the cylinder: (I) The pressure in the fluid must 
be equal to the normal component of stress in the solid 
at the interface; (II) the normal (radial) component of 
displacement of the fluid must be equal to the normal 
component of displacement of the solid at the interface; 
and (III) the tangential components of shearing stress 
must vanish at the surface of the solid. That is, 

pi+p.=--[rr] at r=a, 

and 

In cylindrical coordinates, e 

at r=a. 

(19) 

(20) 

(21) 

Err]= xa+ 2•aud Or: 2me•E(•/1- 2.)a+ Oud Or-], 
[,03 = ,[ (1/,) (audo o) + fie/a,) (.40 ], 

and 

[rs ]= Oud Oa + Ou d Or]. 

By the conditions of symmetry, [-rz]=0 everywhere. 
Upon substitution from Eqs. (15), (17), (14), (12), (16), 
(18), and (13), the boundary condition Eqs. (19), (20), 

• See reference 2, second edition, p. 347. 
• See reference 4, p. 288. 
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and (21) become, for the nth mode, 

XlJ nt (Xl)a• -- nJ ,•(x2) b,• 
+ 

09a) 

- (2oa) 
and 

Solving the• equations simultaneously for c. is labori- 
ous but straightfo•rd. The result is 

-v0..(-j) 

whe• •., the pha•-•fft angle of the nth scattered 

wave, is defined by 

tann • = tan• •(xa) 
X Etan• •+ tanot.(xa)•[tan• •+ tantt,(x 3-]. 

The intermediate scattering phase-angles 

• n(x) = tan-•E - J•(x)/N •(x)-l, 
a•(x) = tan-•E- xJ ,' (x) / J n(x)-l, 

and 

•(•) = tan-'['-- •,%' (•)/-V•(•)3, 

have been defined and their values tabulated previously. a 
The angle •b., which is a measure of the boundary 
impedance at the surface of the scatterer, is given, for a 
solid scatterer, by 

tan•= (- p•/m) tan•(x•, a), (23) 

where the new scattering phase-angle •,(xt, a) is given 
by 

xxJ•'(x•) 2n2J•(x•) ] •,(x•, •)= tan -• • • 2 (a/l-- 2a)x•:[J•(x•)--J•"(xx)• - 2n•Ex:••)3 I' 
x•J•t (x•)-- J•(x•) neJ•(x•)--x•Jn (x•)+x•J• (x2)J 

For convenience • computing values of this function, it can be written in terns of •e angle a•(x): 

tana•(xx) n • r•(xt, a) = tan -t x22 t•a•(xt)+• [•a•(.•n•--Ix22 . 
2 tana•(xx)+n=--}x• • n•[tan•(x•)+13 [ 

(24) 

(25) 

Although •'n as written above is explicitly a function of 
xx and.x2, it can be considered a function of xx and a, 
since the ratio of x• and x• is a function of v only. 
Values of •'•(x•, a) computed from Eq. (25) for a= « are 
given in Table I. For convenience in finding the tangent, 
the value of the angle lying between 4-90 ø is given in 

INCIDENT PLANE WAVE 

Fro. 2. Choice of coordinate axes for scattering by spheres. 

the table. The dotted lines indicate that •(x•, a) passes 
through 4-90 ø between the adjacent entries, and thus 
serve to point out the infinities of tanl',(xb a). It will be 
seen below that the infinities of tanl%(xx, •) occur at 
precisely the frequencies of those normal modes of free 
vibration of the scatterer which satisfy the conditions 
of symmetry of the scattering problem. The dotted lines 
in Table I thus mark the locations of the normal modes 
of vibration of the scatterer. For other values of Poisson's 

ratio the functions will be similar, the only difference 
being shifts in the locations of the normal modes. 

The scattering pattern, or distribution-in-angle of 
pressure in the scattered wave at large distances from 
the cylinder, can be found from Eqs. (17) and (22), 
using the asymptotic expressions for the bessel functions 
for large arguments: 

I 2 \« • 

Ip.l•,.•,Pota.-•r) l •oe,•sin.,•exp(j•,•)cosnOl. (26) 
Scattering by Solid Spheres 

Let us assume that plane waves of sound in a fluid 
medium are incident upon a sphere of some isotropic 
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TA• I. Values of l'dxt, a) for the cylindrical case for a= «. 
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xt n=O n=l n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

0.0 0.00 ø - 45.00 ø 0.00 ø 0.00 ø 0.00 ø 0.00 ø 0.00 ø 0.130 ø 0.(1t3 ø 0.00 ø 
0.2 1.37 --44.13 3.59 2.06 1.52 1.20 1.01 0.86 0.76 0.67 
0.4 6.27 -43.33 15.47 8.73 6.33 4.97 4.02 3.46 3.03 2.68 
0.6 14.35 -41.18 36.24 20.10 14.07 11.15 9.12 7.80 6.80 6.04 
0.8 25.60 -37.48 60.28 35.26 25.40 19.90 16.24 14.00 12.12 10.24 

1.0 38.90 -31.24 79.03 51.42 37.95 30.52 25.18 21.23 18.52 16.84 

1.2 52.22 - 18.06 ' ' •g•'.•i 65.40 50.79 41133 34.96 30.31 26.58 23.56 
1.4 63.81 -t-62.49 -79.71 76.03 61.87 52.07 45.11 38.96 34.61 31.22 

1.6 73.08 "•'1'.•;• - 74.29 SS.8S 70.71 61.11 53.83 47.93 42.73 39.11 
1.8 80.33 -7.53 -68.94 89.73 77.52 68.61 61.51 55.74 50.71 46.45 

2.0 86.05 +15.39 -63.54 ' ' •'.õ• 82.84 74.55 67.96 62.24 57.38 53.06 
2.2 ' ' •'.•õ 36.63 -56.21 -81.57 87.06 79.25 73.05 67.88 63.03 59.43 

2.4 -85.16 53.17 -49.71 -77.67 -89.43 83.05 77.21 72.25 67.97 64.10 
2.6 --81.30 64.93 -37.81 -73.08 -86.35 86.22 80.71 76.15 72.17 68.51 
2.8 -77.32 73.30 - 19.43 -64.48 -83.42 88.92 83.58 79.25 75.52 72.15 

3.0 -72.71 79.69 +6.92 +68.10 -80.28 -88.67 86.02 81.83 78.34 75.20 

3.2 -66.65 85.83 34.29 -74.64 -76.17 -86.39 88.15 84.09 80.71 77.75 

3.4 -57.35 74.49 54.21 -65.75 -68.06 -84.05 --89.92 86.04 82.78 79.94 
3.6 --40.29 87.38 67.25 -55.95 -11.94 -81.35 -88.10 87.77 84.58 81.86 

3.8 -6.92 -89.02 76.96 -40.24 +85.24 -77.55 --86.28 89.35 86.18 83.57 

4.0 -t-34.15 -86.10 ' ' •)'.• -11.45 ' ' •'.•õ -69.80 -84.30 ' ' •b'.i•i 87.59 85.03 
4.2 58.25 -83.24 -{-70.33 +28.36 -78.33 -27.54 -81.87 -87.69 88.91 86.34 

4.4 70.32 -80.06 80.59 57.79 -73.27 +75.02 -78.22 --86.15 ' ' •b'.•õ 87.54 
4.6 77.19 - 76.03 84.69 78.81 - 66.94 88.55 - 70.46 - 84.38 - 88.63 88.64 

4.8 81.68 -70.05 87.52 "'1¾.• -56.75 ' ' •5'.• -29.41 -82.10 -87.38 89.69 
5.0 84.94 - 60.60 89.87 68.66 - 34.99 - 82.97 + 70.97 - 78.49 - 86.02 - 89.28 

solid material. Let the center of the sphere coincide with 
the origin of a rectangular coordinate system, and let the 
plane waves approach the sphere along the negative 
z axis, as shown in Fig. 2. The analysis is very similar to 
that for the cylindrical case. We transfer to spherical 
coordinates defined by 

x= r sin0 cos4, y= r sin0 sin4, z = r cos0. 

Because the incident wave approaches along the axis of 
4, there is no dependence on 4. It is logical to assume 
that there is no component of displacement in the 
4-direction, and it follows that the only non-zero com- 
ponent of the vector potential in this case is A o. The 
potentials are then found to be of the forms, 

•-- • a.j.(k,r)P•(cosO) 

and 

d 

A,= •'. b•j.(k=r)--P.(cosO). 
,,=o dO 

Pressure in the incident wave is represented by 7 

pl = Po exp(--jkaz)= Po exp(-jkar cos0) 

= P0 • (2n+ 1)(- j) "j•(kar)P,(cosO). 

The outgoing scattered wave will be of the form, 

p,= • c,[-j,(kar)-jn•(kar)•P,(cosO). (27) 

The same boundary conditions at the surface of the 
scatterer are applied to the expressions for displacement, 
pressure, and dilatation, which are either given above 
or derivable from the above. In spherical coordinates 
the stress components are 

[rr-I= XA+ 2uOu,/ar= 2OlC==[-(a/1-- 2a),X+audOr-], 

[rO]=/•[Ou-•ø--uø+-I OU• l, 
L Or r r O0_l 

See reference 2, second edition, p. 354. 
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and 

• . [r•]= • sin0 ao Or 
By carrying the analysis through as in the cylindrical 

case, we find that 

c•= -- Po(2n+ 1) (--j) •+a sinn • exp(jn •), (28) 

where the phase-shift • of the nth scattered wave is 
defined by 

tan,/•= tan•(xa)[ tan• •-b tana•(xa) ]/ 
tan•+ tan/g•(xa). 

The intermediate angles, 

• •(x) = tan -•[- j • (x)/n • (x) ], 
a•(x) = tan-•[ - xj•'(x)/j•(x)], 
/• • (x) = tan -• [- xn •' (x)/n • (x) ], 

have been defined and their values tabulated previ- 
ously. 8 The boundary impedance phase-angle av• is 
defined by 

tanebb=- (oa/ox) tanf•(x•, •), (29) 

where the new scattering phase angle f•(xx, ½) is given 
by 

x•j•'(xO 2(n2+n)jn(x•) ] x2 • x•j•'(xO-j•(xO (n•+n-2)j•(x•)+x•j•"(x•) 
•(xx,,)=tan -• -- -- • . 

2 (,/1-2v)x•[-j•(xO-jn"(xO] 2(n•+n)[j•(x•)_x••,(x•)] • 
x•j •' (xO - j • (xO (n • + n - 2 )j • (x•) + x• •j ,," (x•) ] 

This function can be expressed in terms of the angle a•(x): 

tana•(x0 n•+n x• • tana•(x0+ 1 n•+n-l-•x•+tana•(x•) 
r•(x•, a)= tan -• •- • . 

2 n•+n-•x•+2 tana•(x0 (n•+n)[tana•(x•)+l] I 
tana•(x0 + 1 n•+n - 1- •x•" tana•(x•)d 

(3O) 

Values of this function computed from Eq. (30) for • = « 
are given in Table II. The dotted lines again indicate the 
infinities of tan•(x•, •), that is, the normal modes of 
free vibration of the scatterer. 

The distribution in angle of pressure in the scattered 
wave at large distances from the sphere is found from 
Eqs. (27) and (28) by means of the asymptotic expres- 
sions for the spherical bessel functions for large argu- 
ments: 

P0 o, 

[P• I ,--•ar I •o(2n+ 1) sin• exp(j•)P•(cos0)l. (31) 
HI. EXPERIMENTAL APPARATUS 

Measurements of the distribution-in-angle of sound 
scattered in water by metal cylinders were made for the 
purpose of checking the theory. These measurements 
were made in a large steel tank at or near a frequency 
of one megacycle per second. A sound projector in one 
end of the tank irradiated the scatterer with sound. A 
receiving hydrophone was mounted in such a way that 
it could easily be moved to any position lying on a circle 
concentric with the scatterer, and served to measure the 
distribution in angle of the pressure in the scattered 
wave. Short wave trains or "pulses" of sound were used 
in order that the measurement of each pulse could be 
effectively completed before sound reflected from the 
walls of the tank could reach the receiving hydrophone. 
A novel feature, frequency modulation of the pulse 

repetition rate, served to identify interfering pulses 
which, still reverberating in the tank from the previous 
transmitted pulse, happened to arrive at the receiver at 
the same time as the pulse to be measured. A small 
adjustment of the average pulse repetition rate was 
effective in controlling interferenc e of this type. Both 
transducers employed x-cut quartz crystals operated at 
resonance. Serious distortion of the short (64 t•sec) 
pulses by the transducers was prevented by lowering the 
Q of the quartz crystals by increasing the radiation 
loading. This was accomplished by inserting between 
the crystals and the water an acoustic quarter-wave 
transformer in the form of a thin disk of Plexiglas. The 
amplitude of the scattered sound pulses was measured 
by a modified substitution method, an oscilloscope being 
used as an indicator. The pulses were brought to a 
standard deflection on the oscilloscope, changes in the 
pulse amplitude being compensated by changes in the 
attenuation in the receiving system. 

IV. CONIPARISON OF THEORY AND EXPERIMENT 

The eXPerimental data were normalized so that they 
could be compared with scattering patterns computed 
from the theory. In order to do this, the amplitude of 
the pressure in the incident wave (P0) was measured by 
moving the receiving transducer to the position of the 

• See reference 3. Care must be taken to distinguish between the 
cylindrical and spherical cases, since the same symbols are used for 
the scattering phase-angles in both cases. 
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TABLE II. Values of rn(xi, a) for the spherical case for a= «. 
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0.0 0.00 ø -- 45.00' 0.00 ø 0.00 ø 0.00 ø 0.00 ø 0.00 ø 0.00 ø 0.00 o 0.00 o 
0.2 1.16 --44.72 3.05 1.94 1.41 1.13 0.96 0.81 0.73 0.64 
0.4 4.66 --43.57 12.77 7.77 5.91 4.66 3.91 3.33 2.93 2.62 
0.6 10.58 --41.62 29.97 17.88 13.38 10.38 8.73 7.50 6.58 5.88 
03 18.89 --38.54 51.40 31.55 23.47 18.83 15.93 13.58 12.19 11.01 

1.0 29.12 -33.76 70.41 46.79 35.44 28.67 24.25 20.74 18.32 16.09 

1.2 40.28 --26.18 83.89 60.52 47.88 39.29 33.22 29.67 25.84 23.32 

1.4 51.05 -- 12.80 ' ' •5• 71.44 58.67 50.00 43.23 38.34 34.49 31.51 
1.6 60.55 +16.87 --80.31 79.64 67.68 59.02 52.20 46.57 42.41 38.72 
1.8 68.41 89.15 -- 75.00 85.78 74.68 66.42 59.69 54.53 49.80 45.77 

2.0 74.78 "•'5'.õ• - 70.20 "•'•.• 80.14 72.50 66.17 60.82 56.28 52.29 

2.2 79.92 +9.84 --65.27 --85.58 84.46 77.29 71.50 66.61 62.27 58.30 
2.4 84.14 30.55 --59.50 --82.18 87.97 81.17 75.75 71.13 67.13 63.16 

2.6 87.71 48.97 "•'.õ• -- 78.94 "•'9'.$) 84.39 79.27 74.89 71.11 67.61 

2.8 ' ' •'9'.iõ 61.45 --41.61 --75.41 --86.44 87.06 82.18 78.10 74.62 71.07 

3.0 -- 86.24 70.09 -- 25.03 -- 70.56 -- 83.95 89.38 84.63 80.80 77.41 74.43 

3.2 --83.36 76.48 --0.51 --55.48 --81.37 "•'•.õ• 86.75 83.03 79.87 77.00 

3.4 -80.31 81.81 +27.37 ' ' •'l'.õi --78.27 --86.56 88.61 84.98 81.93 79.23 

3.6 -- 76.72 88.64 49.05 -- 68.79 -- 73.44 -- 84.57 "•) 86.69 83.75 81.23 

3.8 -- 72.00 "k•'.ii 63.24 --59.85 --59.37 --82.35 --88.10 88.21 85.33 82.88 

4.0 --64.84 85.64 72.99 --47.06 +65.07 --79.48 --86.50 89.61 86.71 84.30 

4.2 --51.66 89.00 81.77 --24.13 "•i --74.70 --84.81 ' ' •'•.• 87.99 85.62 

4.4 --22.39 ' ' •'8'.,•õ ' ' •5•'.i•- +13.38 --80.54 --60.64 --82.81 --87.76 89.17 86.81 

4.6 +26.20 --86.12 +73.10 47.64 --75.60 +48.49 --80.07 --86.41 ' '•.)i 87.88 
4.8 56.58 --83.70 80.80 68.81 --70.16 84.65 --75.21 --84.90 --88.62 88.89 

5.0 70.03 --80.89 84.41 --62.36 ' ' •'8'.i• --60.25 --83.03 --87.50 89.85 

scatterer. After normalization, it was still necessary to 
add a factor amounting to 1.9 db to the amplitude of the 
scattered sound in order to bring the experimental data 
into good agreement with the theory. This correction 
factor has been explained, and its value computed with 
good accuracy, by taking into account the fact that the 
illumination of the scatterer varies in phase and ampli- 
tude along its length2 

The part of Eq. (26) which was evaluated in com- 
puting the patterns was 

}1 ,• sin• exp(jr/n) cosnOl, 

and the corresponding numerical scale is shown on all 
the patterns used as illustrations. The values of Poisson's 
ratio for the various scatterers were assumed, because 
of the difficulty of measuring this constant directly; but 

• J. J. Faran, Jr., Sound Scattering by Solid Cylinders and 
Spheres, Technical Memorandum No. 22 (March 15, 1951), 
Acoustics Research Laboratory, Harvard University, Cambridge, 
Massachusetts. 

the values of Young's modulus were measured (to 
within 4-5 percent) by finding the frequency of the first 
mode of fiexual vibration of the cylindrical specimen 
mounted so that it could vibrate as a fixed-free bar. The 
value of • was then determined by means of Eq. (5). In 
some cases where the pattern was very sensitive to fre- 
quency, it was necessary to choose a value of • slightly 
different from that based on the Young's modulus 
measurement in order to bring the measured and 
computed patterns into agreement. Comparison of the 
value of ¾oung's modulus corresponding to the assumed 
value of x• with the measured value serves in these cases 
to indicate the degree of agreement between experiment 
and theory. 

Figures 3 through 13 are measured and computed 
scattering patterns for cylinders of various sizes. The 
pressure in the scattered wave is plotted linearly against 
scattering angle. In each case the arrow indicates the 
direction of the incident sound. The angle 0 is measured 
from the top center of the graph, the incident sound 
coming from the direction 0= 180 ø. For each size of 
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Fxo. 3. Scattering pattern for brass cylinder 0.0322 in. in 
diameter at 1.00 me/see. Points: Measured amplitude of pressure 
in the scattered wave. The measured ¾oung's modulus was 10.1 
X 10 n dynes/cm a. Cur•e: Computed pattern for xa= 1.7, xt--0.6, 
•r--«, m=8.5 g/era a. 

scatterer, the pattern computed on the basis that the 
scatterer is rigid and immovable is included for com- 
parison. 

Figures 3 and 4 show scattering patterns for brass and 
steel (drill rod) cylinders of the same size, for each of 
which xa--1.7. These patterns are both very similar to 
that for a rigid, immovable scatterer of the same size 
(Fig. 5). 

Figures 6-8 show scattering patterns for cylinders of 
various materials twice as large in diameter, that is, 
x.•=3.4. The pattern for a brass cylinder of this size 

' .75 

FIO. 4. Scattering pattern for s•ed cylinder 0.0042 in. in diameter 
at 1.00 inc/s/to. Points: Measured amplitude of pressure in the 
scattered wave. The measured ¾oung's modulus was 20.0X 10 u 
dynes/cm a. Cume: Computed pattern.•forlxa=l.7 , xt=0.45, 
* 0.28, m--=7.7 g/cmL 

FARAN, JR. 

. ½ • 
Fro. 5. Computed amplitude of pressure in. wave scattered by a 

rigid, immovable cylinder for xa = 1.7. 

(Fig. 6) is somewhat unusual; the amplitude of sound 
scattered back in the direction of the source is nearly 
zero. This near-null in the back-scattered sound is fully 
explained by the mathematical solution in which the 

Fro. 6. Scattering pattern for brass cylinder 0.0625 in. in diame- 
ter at 1.02 mc/sec. Points: Measur"•it-amplitude of pressure in the 
scattered wave. The measured ¾oung's modulus was 10.4X 10 u 
dynes/cm a. Curae: Computed pattern for xa-$.4, x•=1.185, 
a--l, pt=8.5 g/cm s (corresponding to E--10.SX10 n dynes/cron). 
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term for n--2 in the series for the scattering pattern 
suddenly becomes very large in amplitude and of the 
proper phase to cancel the sum of all the other terms at 
0= 180 ø. This, in turn, is brought about by the presence 
of an infinity in the tan•(x•, a) function for a•-« at 
xt--1.18-.- (corresponding to a normal mode or reso- 
nance of the scatterer), in the neighborhood of which this 
function goes rapidly through a wide range of values 
causing the variations in the coefficient of the n=2 
term. The value of x• for the computed pattern of 
Fig. 6 was chosen to give a deep notch at 0= 180 ø, and 
the frequency at which the experimental pattern was 

FIG. 8. Scattering pattern for steel cylinder 0.0625 in. in diame- 
ter at 1.00 inc/sec. Points: Measu'h'T• amplitude of pressure in the 
scattered wave. The measured Young's modulus was 19.5X 10 •t 
dynes/cm :. Curue: Computed pattern for x: = 3.4, xt = 0.9, •r = 0.28, 
Ot = 7.7 g/cm •. '•-• 

Fro. 7. Scattering pattern for copper cylinder 0.0625 in. in 
diameter at 1.00 inc/sec. Points: Measured amplitude of pressure 
in the scattered wave. The measured ¾oung's modulus was 
11.9X10 n dynes/cm 2. Curve: Computed pattern for xa-3.4, 
x•-- 1.08, *- •' -•, m=8.9 g/cm a (corresponding to E=12.YX10 n 
dynes/cm2). 

measured was chosen the same way. Figure 7 is the 
scattering pattern for a copper cylinder of the same 
size. The value of x• for the copper cylinder is near 
enough to 1.18 that the coefficient of the n=2 term is 
still large, but in this case it is of the opposite phase and 
causes the sound scattered in the direction 0= 180 ø to be 
somewhat larger in amplitude than that scattered by a 
rigid, immovable cylinder of this size (Fig. 9). The 
velocity of sound in steel is so much higher than that in 
brass or copper that this scatterer behaves nearly as 
though it were rigid and immovable, and its scattering 
pattern (Fig. 8) is little different from that for the .rigid, 
immovable case. 

Figures 10, 11, and 12 are scattering patterns for 
brass, steel, and aluminum cylinders for which xa = 5.0. 

Fro. 9. Computed amplitude of pressure in wave scattered by a 
rigid, immovable cylinder for x,=3.4. 
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Fla. 10. Scattering pattern for brass cylinder 0.093 in. in diame- 
ter at 1.015 inc/sec. Points: Measured amplitude of pressure in the 
scattered wave. The measured Young's modulus was 10.0X10 n 
dynes/cm 2. Curve: Computed pattern for xa= 5.0, x• 1.78, •-«, 
p•-8.5 g/cm a (corresponding to E• 10.2X 10 tl dynes/cm2). 

of xl than upon the density of the scatterer. The pattern 
for a rigid, immovable cylinder of the same size is shown 
in Fig. 13, and it is apparent that all these patterns for 
metal cylinders of this size bear little resemblance to 
this limiting case. 

The theory thus verifies the existence of nulls in the 
back-scattered sound for cylinders of various metals, 
and at the proper frequencies; but a further test is to see 
whether it predicts properly the manner in which the 
amplitude of the back-scattered sound (and the shape of 
the entire pattern) changes with frequency. In order to 
test this, patterns weYe measured for the brass cylinder 
of Fig. 6 and the steel cylinder of Fig. 11 at two other 
frequencies, 3 percent below and above that at which the 
reference patterns were measured. The corresponding 
patterns predicted by the theory were computed by 
making a corresponding change in the values of the x 
parameters. In Fig. 14, the pattern of Fig. 6 is repro- 
duced in the center, and those for 3 percent changes in 
frequency are shown at either side. In Fig. 15, the 
pattern of Fig. 11 is reproduced in the center, and the 
patterns for 3 percent changes in frequency are shown on 
either side. The theory is seen to predict the changes in 
the measured patterns with gratifying precision. These 
groups of patterns also emphasize the fact that the null 

The frequency of measurement of the pattern of the 
brass scatterer was chosen to give the deepest notch at 
120 ø, and the value of xx was*chosen to make the 
patterns agree. The choice of the value of xx is well 
substantiated by the measurement of the Young's 
modulus of this scatterer, since the value of E corre- 
sponding to the chosen value oœ x• is within 2 percent of 
the measured value. Figure 11 shows that, just as in the 
case of brass (Fig. 4), there is a near-null in the sound 
back-scattered from a steel cylinder at a frequency near 
that of the lowest-frequency normal mode which, for 
a= 0.28, occurs at xt= 1.30---. Figure 12 shows that the 
same is true of an aluminum scatterer of the same size. 

Although the velocity of compressional waves in steel is 
not the same as that in aluminum, the values of Poisson's 
ratio differ sufficiently that this normal mode occurs in 
these two materials for the same physical size of the 
scatterers. These two patterns are so similar that they 
are seen to depend much more critically upon the value 

Fro. 11. Scattering pattern•or steel cylinder •.09375 in. in 
diameter at 0.99 inc/sec. Points: Measured amplitude of pressure 
in the scattered wave. The measured ¾oung's modulus was 
19.3X10 n dynes/cm 2. Curve: Computed pattern for xa=5.0, 
x• - 1.293, ,- 0.28, p•= 7.7 g/cm a (corresponding to œ• 19.7X 10 n 
dynes/cma). 

'- -' , 
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in the back-scattered sound is very sensitive to 
ß frequency. 

Measurements of scattering by a few spheres were 
made with this apparatus. However, because the sound 
scattered by a sphere diverges in three dimensions 
(instead of two, as in the case of a long cylinder), the 
measurement was found to be very difficult, because of 
the reduced margin of signal to noise. The measure- 
ments (and also computations) indicate that, although 
rapid changes in the pattern do occur, there is no null in 
the sound back-scattered in water by a brass sphere, 
near its lowest-frequency normal mode of vibration. 

V. REMARKS ON THE BEHAVIOR OF SOLID 
SCATTERERS 

It is interesting to examine the behavior of certain of 
the functions which appear in the mathematical solu- 
tion, especially the tan•'n(ggl, o') functions. As noted 
above, it can be shown that the infinities of the 
tan•(x•, a) functions occur at precisely the frequencies 
of those normal modes of free vibration of the scattering 
body which satisfy the conditions of symmetry of the 
scattering problem. This can be done by applying 
boundary conditions to expressions for displacement and 
dilatation written in general form in terms of an un- 
known frequency. The boundary conditions, for free 
vibrations, are simply that the normal component of 
stress and the tangential components of shearing stress 

Fro. 12. Scattering pattern for aluminum cylinder 0.0925 in. in 
diameter at 1.00 nic/sec. Points: Measured amplitude of pressure 
in the scattered wave. The measured ¾oung's modulus was 
7.0X10 n dynes/cm a. Curve: Computed pattern for 
xt•l.17, a-a, ,ot=2.7 g/era (corresponding to E 7.2X10 n 
dynes/cron). 

Fro. 13. Computed amplitude of pressure in wave scattered by a 
rigid, immovable cylinder for xa= 5.0. 

at the surface of the body must both vanish. Solving the 
resultant equation for frequency (in terms of unknown 
x• and x2 parameters) gives a condition which, in the 
cylindrical case, is identical to requiring the denomi- 
nator of Eq. (24) to vanish. to For a--«, the first few of 
these normal modes occur at the following values of the 
frequency parameter: 

for n=O, x•=2.17.--, 5.43.--, 8.60.--; 
for n=l, x•--1.43-.., 3.5•7..., 3.74..-; 
for n=2, xt=l.18..-, 2.25.--, 3.98..-; 
for n=3, xt-l.81..., 3.01-.-, 4.65---; 
for n=4, x•=2.36-.-, etc. 

The first normal modes for n= 1, 2, and 3 occur for lower 
values of x• (lower frequencies) than that for n=O, 
contrary to what we might expect. The reason for this is 
that there are no shear waves associated with the n= 0 
normal modes. The complicated wave structure which 
comprises a normal mode can be realized at a much 
lower frequency with shear waves than without, be- 
cause the velocity of shear waves is so much lower than 
that of compressional waves. 

For fluid scatterers, the functions tan•(x•, a) in 
Eqs. (23) and (29'• are replaced s by the functions 

l0 For details of this demonstration, see reference 9. 
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Fro. 14. The scatterlag pattern of Fig. 6 repeated for comparison with measured and computed patterns for frequencies 
3 percent higher (right) and 3 percent lower (left). 

tanot•(x•). It is interesting to note that the infinities of 
these functions also correspond to frequencies of normal 
modes of free vibration of the (fluid) scatterer, since the 
infinities of tanas(x•) occur at the zeros of J,•(xt) or 
js(x•), in the cylindrical and spherical cases, respectively. 

The coefficient cs in the series for the scattering pa.t- 
tern does not attain its maximum value at exactly the 
frequencies of the normal modes of free vibration of the 
scatterer. Since the amplitude of cs is proportional to 
sin•, cs reaches its maximum value when tan• be- 
comes infinite. This represents a shift in the resonant 
frequency of the normal mode, and this shift is attributed 
to the reactive component of the acoustic impedance 
presented to the scatterer by the surrounding fluid, i.e., 
the reactive component of the radiation loading. In the 
case of solids having densities greater than that of the 

surrounding fluid, however, this frequency shift is 
usually small. 

While measurements were being made with the ex- 
perimental apparatus at frequencies near that of a 
normal mode, it was in some cases possible to observe 
"ringing" of that normal mode following the end of the 
pulse; that is, long transients could be observed at the 
end (and at the beginning) of the scattered pulse. By 
adjusting the frequency to give the maximum amplitude 
of the transient at the end of the pulse, it was thus 
possible to measure the frequencies of various normal 
modes. It was also possible to identify the order n of the 
excited mode, because the amplitude of the transient 
following the pulse was proportional to cosn0. These 
transients were not noticeable in the case of the first 

normal mode for n=2. Apparently the damping by 

2'0 

Fro. 15. The scattering pattern of Fig. 11 repeated for comparison with measured and computed patterns for frequencies 
3 percent higher (right) and 3 percent lower (left). 
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radiation into the water was great enough to cause any 
ringing to die out quickly. However, the first normal 
modes for n=O, 1, a•nd 3 were observed and identified 
for brass and steel cylindrical scatterers of appropriate 
sizes and showed good agreement with the frequencies 
predicted by the theory. 

That there are sizeable shifts in the frequencies of the 
normal modes with changes in Poisson's ratio suggests 
that finding the frequencies of one or more of these 
normal modes of vibration might provide a method of 
measuring Poisson's ratio for cylindrical or spherical 
specimens. The variation of the frequencies of these 
normal modes with Poisson's ratio is illustrated in 

Figs. 16 and 17, where the values of x• at which the first 
normal modes for n=O, 1, 2, 3, and 4 occur are plotted 
as functions of Poisson's ratio. The variation of the 

second normal mode for n = 2 is also shown in the graph 
for the spherical case. In this connection, as well as in 
the scattering problem itself, the potential utility of 
having the l',(xt, a) functions computed for a wide 
range of values of Poisson's ratio will be evident. A 
computation program to yield these results appears to 
be justified. The frequencies of the normal modes cannot 
be computed explicitly, but can be found easily from the 
locations of the infinities of the tant,(x•, a) functions. 

It is interesting to compare the behavior of the taM, 
functions for solid and fluid scatterers as xt, the fre- 
quency parameter for the scatterer, approaches zero. 
For solid scatterers, either cylindrical or spherical, as 

tan•-•O, n•l; tan•pr•pa/pl; 

while for fluid scatterers, where 

t•nq• = (- os/m) tans •(x]), 
as xr•O, 

In neither case, by letting x•-•O, do we realize the case 
of the rigid, immovable scatterer where tan•= 0 for all 
n. In order that xx = toa/ct--•0 at finite frequencies in the 
solid case, the velocities of both the compressional and 
shear waves must become infinite, and the scatterer does 
indeed become rigid. The only term where tan• does 
not vanish is that for n= 1. This deviation from the 

rigid, immovable case is simply due to oscillation of the 
scatterer as a whole in synchronism with the incident 
sound field. Thus, by setting x]=0 in the solution given 
here for solid scatterers, we can calculate the scattering 
from a rigid, movable cylinder or sphere of density m. To 
pass to the case of the rigid, immovable scatterer, we 
must also require that the density of the scatterer 
come infinite. In the case 6f a fluid scatterer, as 
only tan•0 approaches the value for the limiting case of 
a rigid, immovable scatterer. For n= I, tanq>• behaves 
in the same way as in the case of the solid scatterer, and 
represents oscillation of the scatterer in synchronism 
with the incident sound. Now, for fluid scatterers, in 
order that xr-•0 at finite frequencies, it is necessary that 
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Fro. 16. The values of xt for the first few symmetrical normal 
modes of free vibration of a solid cylinder plotted as functions of 
Poisson's ratio. 

the fluid become incompressible; but as this happens, 
the scatterer does not necessarily become rigid to shear 
distortions. It must then be that, for n= 2 and higher, 
shape distortions of the incompressible fluid scatterer 
make the components of the scattered wave different 
from what they would be if the scatterer were rigid. 
Because the fluid scatterer never becomes rigid as x•--}0, 
one can only pass from this solution to the case of the 
rigid, immovable scatterer by letting the density become 
infinite. 

Two summary comments can be added regarding the 
general features of scattering by solid cylinders and 
spheres. If the frequency of the incident sound is lower 
than that of the first symmetrical normal mode of free 
vibration of the solid scatterer, and if the density of the 
scatterer is greater than that of the liquid, there is little 
difference between the scattering pattern for the solid 
scatterer and that for a rigid, immovable scatterer. But, 
rapid changes in the shape of the scattering pattern and 
in the total scattered power (or scattering cross section) 
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Fro. 17. The values of xt for the first few gymmetrlcal normal 
modes of free vibration of a solid sphere plotted as functions of 
Poisson's ratio. 
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can occur with small changes in frequency in the vicinity 
of certain of the normal modes of free vibration of the 

solid scatterer. These changes include the appearance of 
deep minires in the scattering pattern at certain angles 
and may include, for cylinders, a near-null in the sound 
scattered back toward the source. 
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The Growth of Subharmonic Oscillations 
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Subharmonic oscillations at one-half the frequency of excitation may appear in certain types of oscillating 
systems, among which is the direct-radiator loudspeaker. These oscillations occur at very nearly the resonant 
frequency of the system when the parameters of the system are made to var• at twice this frequency. The 
rate of growth of the subharmonlc depends upon the amount of variation of the parameters reiative to the 
dissipation in the system. If the dissipation is small, the rate of growth may be large. In the loudspeaker, 
conditions are such that the rate of growth is usually small for typical conditions of operation. 

JULY, 1951 

HE generation of subharmonic oscillations by a direct-radiator loudspeaker has often been ob- 
served3 -• Such oscillations usually occur at one-half the 
frequency of the current supplied to the loudspeaker, 
and appear for only certain discrete frequencies near the 
center of the audio spectrum. In most cases, the 
subharmonic is not present unless the loudspeaker is 
being operated near its maximum power. When present, 
the subharmonic is easily audible, even though sound 
pressure measurements indicate the amplitude of the 
subharmonic is only a few percent relative to the funda- 
mental. The statement has been made that this sub- 

harmonic distortion is usually of lit fie practical im- 
portance in the operation of the loudspeaker. • The 
reasoning is based on the observed fact that an ap- 
preciable length of time is required for the amplitude of 
the subharmonic to grow to its ultimate value. Since 
typical program material is of constantly changing 
nature, there is little opportunity for the subharmonic 
to build up. In the following rather simple discussion, 
the growth of the subharmonic oscillation is considered 
with the intent of determining what factorz influence the 
rate of growth and why this rate is low for the loud- 
speaker. 

Subharmonic oscillation at one-half the frequency of 
an exciting force may occur in oscillating systems having 

• H. F. Olson, Acoustical Engineering (D. Van Nostrand Corn~ 
pany, Inc., New York, 1947), p. 167. 

a p.O. Pealerson, J. Acoust. Soc. Am. 6, 227-238 (1935), and 7, 
64-7O (1935). 

a F. yon Schmoller, Telefunken Zeitung 67, 47-54 (June, 1934). 
4 O. Schaffstein, Hochfrequenztechn. Elektroakust. 45, 204-213 

(1935). 
s See reference 2. Also, H. S. Knowies, "Loudspeakers and room 

acoustics," Sec. 22, Henney's Radio Engineering Handbook 
(McGraw-Hill Book Company, Inc., New York, 1941), p. 902. 

a single degree of freedom.a? For the subharmonic to 
appear, the quiescent resonant frequency of the system 
must be very nearly one-half the exciting frequency. 
Further, operation must be such that under excitation 
the resonant frequency of the system is caused to vary 
at the exciting frequency. This variation must take 
place in such a way that sufficient energy is being sup- 
plied to the system to replace that lost by dissipation. If 
more than this amount of energy is supplied, the ampli- 
tude of the subharmonic grows, in theory, without limit. 
Ultimately, in practical systems, some additional effect 
takes over and the amplitude achieves a steady value. 

In order to give a simple example of this type of 
operation, an electric circuit will be considered in some 
detail. This circuit contains in series combination an 

inductance L, a resistance R, and a capacitance C. If q 
is the instantaneous charge on the capacitance, the sum 
of voltages around the circuit is 

rA+ R+q/C=O, (1) 

where dots indicate time derivatives. In some way the 
capacite;nce is made to vary sinusoiclally in time by an 
amount AC about the mean value Co. The instantaneous 
capacitance is 

C= Co(l+a sin2•o,t), (2) 

where the angular frequency of the variation is taken as 
20•,, and am AC/Co. Evidently a can never exceed unity. 
It is possible to show that such a variation in capaci- 
tance can add energy to the oscillating circuit. The 
resonant angular frequency of the circuit in its quiescent 

s N. Minorsky, Nonlinear Mechanics (Edwards Brothers, Inc., 
Ann Arbor, 1947), Chap. XIX. 

7 N. W. McLaehlan, Ordinary Nonlinear Differential Equations 
(Oxford University Press, London, 1950), Chap. VII. 


