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The theory of the scattering of plane waves of sound by isotrapic circular cylinders and spheres is extended
to take into account the shear waves which can exist (in addition to compressional waves) in scatterers of
solid material. The results can be expressed in terms of scattering functions already tabulated. Scattering
patterns computed on the basis of the theory are shown to be in good agreement with experimental measure-
ments of the distribution-in-angle of sound scattered in water by metal cylinders. Rapid changes with
frequency in the distribution-in-angle of the scattered sound and in the total scattered energy are found to
occur near frequencies of normal modes of free vibration of the scattering body.

L. INTRODUCTION

HE scattering of sound was first investigated
mathematically by Lord Rayleigh.!! However,
because of the complexity of the mathematical solution,
he only considered the limiting case where the scatterers
are small compared with the wavelength. The solution
for scattering by rigid, immovable circular cylinders and
spheres, not necessarily small compared with the wave-
length, was given in convenient form by Morse, who
defined and tabulated values of phase-angles associated
with the partial scattered waves, in order to simplify the
complicated dependence on bessel functions.? Although
most solid scatterers in air can be considered rigid and
immovable, it is valid only in a few special cases to
assume that a scatterer in a liquid medium is rigid and
immovable. In general, the sound waves which pene-
trate the scatterer must be taken into account, as they
* This paper contains the essential results of a thesis submitted
to the Faculty of Harvard University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy. This research
has been aided by funds made available under a contract with the
OI;IEc.)rd Rayleigh, The Theory of Sound (Dover Publications, New
York, 1945), first American edition.
2P. M. Morse, Vibration and Sound (McGraw-Hill Book

Company, New York, 1936), first edition, and (1948), second
edition.

can have a considerable effect on the distribution-in-
angle of the scattered sound and on the total scattered
energy. Morse, with Lowan, Feshbach, and Lax, later
extended his solution to include the effects of com-
pressional waves inside (fluid) cylindrical and spherical
scatterers.? These results are also given in convenient
form in terms of several additional phase-angles whose
values are tabulated. The abject of the research reported
here has been to study sound scattering by cylinders and
spheres of solid material (which will support shear waves
in addition to compressional waves). The mathematical
solution will be given first, after which experimental
apparatus and results will be described.

II. THE MATHEMATICAL SOLUTION
List of Symbols

Most of the symbols used here are, in the appropriate
sections of the analysis, the same as those used by Love
and those used by Morse:

a =radius of cylinder or sphere;
@n, b, c,=expansion coefficients;

3 Mathematical Tables Project and M.L.T. Underwater Sound
Laboratory, Scatlering and Radiation from Circular Cylinders and
Spheres (U. S. Navy Department, Office of Research and In-
ventions, Washington, D. C., 1946).
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A =vector displacement potential;

A, =z-component of vector potential;

A = ¢-component of vector potential;

1 =velocity of compressional waves in the

‘ scatterer;

Ca =velocity of shear waves in the scatterer;

¢ =velocity of sound in the fluid surrounding the
scatterer;

E = Young’s modulus;

j =(—1k

j.( )  =spherical bessel function of the first kind;

Ja()  =Dbessel function of the first kind;

ky =w/cy;

k2 = w/ Co;

ks =w/c3;

n =order integer;

na{ )  =spherical bessel function of the second kind;

N.() =Dbessel function of the second kind;

P =pressure;

pi =pressure in incident wave;

Da =pressure in scattered wave;

P, (cosf) =Legendre polynomial,

Py =amplitude of pressure in incident wave;

r, 8,z  =cylindrical coordinates;

7,8, ¢ =spherical coordinates;

[rr], [#6], [rz]=stress components in cylindrical coor-
dinates;

[rr], [#6], [r¢ ]=stress components in spherical coordi-
nates;

t =time;

u =displacement;

u,, 4y  =components of displacement in the solid;

Ui » =radial component of displacement in inci-
dent wave;

Uy, r =radial component of displacement in scat-
tered wave;

x,v,2 =rectangular coordinates;

x1 =ka;

Xo = k2a H

X3 =ka;

@n, Br, 80, 84, {n, nn=scattering phase-angles;
A =dilatation;

€n =Neumann factor; ¢=1; ¢,=2, n>0;
A u =TLamé elastic constants;

2@ =rotation;

£ =density of the scatterer;

=density of the fluid surrounding the scatterer;
= Poisson’s ratio;

=boundary impedance scattering phase-angle;
=scalar displacement potential ;

=angular frequency (2rf).

E.e;e‘q'g

Scattering by Solid Circular Cylinders

Plane waves of sound of frequency w/27 in a fluid
medium are incident upon an infinitely long circular
cylinder of some isotropic solid material. Let the axis of
the cylinder coincide with the z-axis of a rectangular
coordinate system, and let the plane wave approach the
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cylinder along the negative x-axis, as shown in Fig. 1.
As in the solutions given previously for rigid and fluid
scatterers,'—3 the wave motion external to the scatterer
is assumed to consist of the incident plane wave and an
outgoing scattered wave. It is desired to find the
amplitude of the scattered wave as measured at large
distances from the cylinder. The mathematical expres-
sions for displacement and dilatation inside and for
pressure and displacement outside the cylinder will be
found in general form first, after which the application
of the proper boundary conditions at the surface of the
cylinder will lead directly to the solution.

The waves inside the cylinder will be represented by
suitable solutions of the equation of motion of a solid
elastic medium, which may be written*

(A-20) VA= uV X (23) = p,8%u/ a8, (1)
¥4
. >
g
; y
g —
3 L,
e — 7
a
Q
-
-

FiG. 1. Choice of coordinate axes for scattering by cylinders.

where
A=V-u )
and
20=VXu.
From Eq. (1) can be derived the equations,
VA= (p)/A421)3%A/ 082 (3)
and
V2(28) = (py/ 1) 0*(20)/ 322, )

which define the wave velocities

a=[+2u)/pF=[E(1—a)/n(1+e)(1~25)F (5)
and

c2=(u/p1)*=[E/2p:(1+ ) 1. (6)

Solutions of Eq. (1) can be found by assuming that the

*A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover Publications, New York, 1944), fourth edition,
p. 141,
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displacement can be derived from a scalar and a vector
potential :
u=—V¥+}+VXA. €))

The displacement thus can be thought of as the sum of
two displacements, one associated with compressional
waves and the other with shear waves. If we assume that
the potentials satisfy the equations,

V= (1/¢%) 02¥/ 312 (8)
and

V2A=(1/c?)3*A/ 08, 9

we can show that A(=V-(— V¥)) satisfies Eq. (3), and
that 2&(=VXVXA) satisfies Eq. (4). That these
assumptions do lead to a valid solution of Eq. (1) may
be seen by noting that the solutions we shall obtain
satisfy Eq. (1) by direct substitution. If we now change
to a cylindrical coordinate system defined by

x=rcosd, y=rsinf, 2=z,

it can be seen that pressure and displacement must be
symmetrical about =0 (the direction of the positive
x-axis). Moreover, because the cylinder is of infinite
length, and the incident plane wave of infinite extent,
there can be no dependence on z, and it is logical to
assume that there is no displacement in the z-direction.
Subject to these conditions, the solution of Eq. (8) can
be written

V=3 anJ (k1) cosnd.

n=0

(10)

(The time dependence factor exp(jwt) will be understood
in all the expressions representing waves.) Examination
of Eq. (9) shows that, subject to the conditions dis-
cussed above, the vector potential can have no com-
ponent in the r- or the ¢-direction. The vector Eq. (9)
then reduces to a scalar equation in 4 ,, and its solution
can be written

A,= 3 boJ o(kor) sinnd.

n=0

(11)

Only sine terms appear here, because the vector po-
tential must be anti-symmetrical about =0 in order
that the displacement derived from it shall be sym-
metrical about 8=0. Now, by Eqgs. (7) and (2),

w [#b, d
U= ) [—] (ko) —a,.d—] ,.(klr)] cosnd, (12)
y

r

n=0] ¥ r

© Ind, d
=2 [—J n(klr)—b,.d—f ,.(kgr)] sinzf, (13)
and

A=F?Y aJ o(kyr) cosnd.

n=0

(14)

The waves in the fluid surrounding the cylinder will
be represented by suitable solutions of the wave equa-
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tion for a (nonviscous) fluid medium, which can be
written
V2p=(1/cs)3%p/ L.

The incident plane wave is represented hy3

pi= Py exp(— jkax) = Py exp(— jkgr cosd)

=Py Y. €.(— )T (ar) cosnd.

n=al

(15)

The radial component of displacement assaciated with
this wave is

.= (1/psw®)dpi/Or

Py = d
= Z en(_j) "d_]n(kaf) cosni.
4

p3w2 n=0

(16)

The outgoing scattered wave must be symmetrical
about =0 and therefore of the form

pPe= i el T w(Rar)— jN o (k3r) ] cosnb. an

The radial component of displacement associated with
this wave is

1

Us, r=

v d
c,.d—-[J a(kar)— JN o(ksr)] cosnd. (18)
2 r

Paw n=0

The factors ¢, are the unknown coefhcients which must
be evaluated.

The following boundary conditions are applied at the
surface of the cylinder : (I) The pressure in the fluid must
be equal to the normal component of stress in the solid
at the interface; (II) the normal (radial) component of
displacement of the fluid must be equal to the normal
component of displacement of the solid at the interface;
and (IIT) the tangential components of shearing stress
must vanish at the surface of the solid. That is,

petpo=—[rr] at r=aq, (19)
Ui, ot Ue, =1, at r=g, (20)

and
[r0]=[rz]=0 at r=a. 21)

In cylindrical coordinates,®

[rr]=MA+-2udu,/ Or=2p:c (a/1—20) A+ Ou,/dr],
[r6]=ul (1/7)(3u./36)+(r3/ 3r)(ue/7) ],

and
[ra])= ul du./dz+0u./or].

By the conditions of symmetry, [rz2]=0 everywhere.
Upon substitution from Eqs. (15), (17), (14), (12), (16),
(18), and (13), the boundary condition Egs. (19), (20},

5 See reference 2, second edition, p. 347.
8 See reference 4, p. 288.
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and (21) become, for the #th mode,
xIJ..'(xl)a,.— an(x2)bn
+ (xa/w?03) [] o (23) — FN ' (2£3) Iea

= —(Poxs/ w?pg)ea(—7)"J o'(x3),

291622x12[(0'/1 — 20’)],.(.‘”1) — Jn”(xl) :Ian
+2p1cn[xaT ' (x2) — T n(22) Jbn

F-a[ T o (%3) — FN a(x3) Je n=— Poen(—7) "2*J u(x3), (20a)
and

2nf 1T & (®1) — T n(x1) Jen
=[32T a(o02) — 22T o/ (2)+ 22T " (22) 100 (212)

Solving these equations simultaneously for ¢, is labori-
ous but straightforward. The result is

(19a)

¢n=—Poea(— 7)™ sing, exp(jn,), (22)
where 7., the phase-shift angle of the nth scattered
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wave, is defined by

tany .= tand (xs)
X [tan® +tana.(xs) /[ tan®d 4 tanB..(xs5) ].

The intermediate scattering phase-angles

61.(217) = tan“l[—fn(x)/Nn(x)l
an(x)=tan [ —aJ . (x)/T n(x)],

Bn(x) = ta.n—‘[— N,/ (x)/N,.(x)],

havebeen defined and their values tabulated previously.?
The angle ®,, which is a measure of the boundary
impedance at the surface of the scatterer, is given, for a
solid scatterer, by

and

tand,= (— P3/Pl) tang‘ﬂ(xb 0‘), (23)

where the new scattering phase-angle ¢ .(x, o) is given
by

x22

a2y, o)=tan] — —

1T n' (1) 212] o (22)
o @) — T () 73T n(ta)— o] ' (o) -+t o () ”
2 (o/1=20)02[Tn@)—Ta"(@)] ~ 20%[xa] () =T (1) ]
0] o (101) = T nli22) LT () — aT o (0) F22T " (22)
For convenience in computing values of this function, it can be written in terms of the angle «,(x):
tana,(x;) n?
x?  tana,(v)+1 tana,(x2)+n2—ixy?

(25)

Calxy, o)=tan™!| ——

2 tane,(a)+n2—3as?

¥ tanaa(xa)+1]

tano,(x)+1

Although {, as written above is explicitly a function of
a1 and x, it can be considered a function of x, and o,
since the ratio of x; and x, is a function of o only.
Values of {.(x1, 6) computed from Eq. (25) for =3 are
given in Table I. For convenience in finding the tangent,
the value of the angle lying between 90° is given in

F 4
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INCIDENT PLANE WAVE

Frc. 2. Choice of coordinate axes for scattering by spheres.

tane ,(xg) 72— 3,2

the table. The dotted lines indicate that {,(x,, o) passes
through +90° between the adjacent entries, and thus
serve to point out the infinities of tan{ ,(x,, o). It will be
seen below that the infinities of tan{.(x:, ¢) occur at
precisely the frequencies of those normal modes of free
vibration of the scatterer which satisfy the conditions
of symmetry of the scattering problem. The dotted lines
in Table I thus mark the locations of the normal modes
of vibration of thescatterer. For other values of Poisson’s
ratio the functions will be similar, the only difference
being shifts in the locations of the normal modes.

The scattering pattern, or distribution-in-angle of
pressure in the scattered wave at large distances from
the cylinder, can be found from Egs. (17) and (22),
using the asymptotic expressions for the bessel functions
for large arguments:

| pal =P ?
Ps_’(

TR

L
| 3 €n sinn., exp(jna) cosnd|. (26)

n=0

Scattering by Solid Spheres

Let us assume that plane waves of sound in a fluid
medium are incident upon a sphere of some isotropic
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TaBLE 1. Values of {a(x1, o) for the cylindrical case for e=1.

x1 n=0 n=1 n=2 n=3 n=4 n=3s n=6 n=7 n=8 n=9
0.0 0.00°  —45.00° 0.00° 0.00° 0.00° 0.00° 0.00° 0.00° 0.00° 0.00°
0.2 137  —44.13 3.50 2.06 1. 1.20 1.01 0.86 0.76 0.67
04 627  —43.33 15.47 8.73 6.33 497 402 3.46 3.03 2.68
0.6 1435  —41.18 36.24 20.10 14.07 11.15 9.12 7.80 6.80 6.04
0.8 2560  —3748 60.28 35.26 25.40 19.90 16.24 14.00 12.12 10.24
1.0 3890  —31.24 79.03 51.42 37.95 30.52 25.18 21.23 18.52 16.84
1.2 5222 —1806  —88.71 65.40 50.79 4133 34.96 3031 26.58 23.56
14 6381  +6249  —79.71 76.03 61.87 52,07 4511 38.96 34.61 31.22
1.6 73.08 —31.82 —74.29 83.85 70.71 61.11 53.83 47.93 273 39.11
18 80.33 —753  —6894 80.73 77.52 68.61 61.51 55.74 50.71 46.45
20 8605  -+15.39 —63.54  —85.59 82.84 74.55 67.96 62.24 57.38 53.06
22 Z89.25 3663  —5621  —81.57 87.06 79.25 73.05 67.88 63.03 59.43
24  —85.16 5317 —4971  —77.67  —89.43 83.05 77.21 72.25 67.97 64.10
26  —81.30 6493  —3781  —73.08  —86.35 86.22 80.71 76.15 7217 68.51
28  —11.32 7330  —1943  —6448  —83.42 88.92 83.58 79.25 75.52 72.15
30 =727 79.69 +692  +68.10  —8028  —88.67 86.02 81.83 78.34 75.20
32 —66.65 85.83 3429 7464 —7617  —86.39 88.15 84.09 80.71 77.75
34  —57.35 7449 5421 —6575  —6806  —8405  —89.92 86.04 82.78 79.94
36  —40.29 87.38 67.25  —5595  —1194  —81.35  —88.10 87.77 84.58 81.86
38 —6.92 —89.02 7696  —4024  +8524  —77.55 —86.28 £9.35 86.18 83.57
40 43415  —86.10 —8762  —1145  —8385  —69.80  —8430  —89.16 87.50 85.03
42 5825  —83.24  +7033  +2836  —7833  —27.54  —81.87  —87.69 88.91 86.34
44 7032 —80.06 80.59 5779 —73.27 47502  —7822  —86.15  —89.85 87.54
46 7719 —76.03 84.69 7881  —66.94 88.55  —7046  —8438  —88.63 88.64
48 8168  —70.05 87.52 1460 —5675 8636  —20.41 —82.10  —87.38 89.69
50 8404  —60.60 89.87 68.66  —34.99 —~82.97 +70.97 —78.49 —8602  —89.28

solid material. Let the center of the sphere coincide with
the origin of a rectangular coordinate system, and let the
plane waves approach the sphere along the negative
z axis, as shown in Fig. 2. The analysis is very similar to
that for the cylindrical case. We transfer to spherical
coordinates defined by

x=rsinf cosp, y=rsindsing, z=r cosf.

Because the incident wave approaches along the axis of
¢, there is no dependence on ¢. It is logical to assume
that there is no component of displacement in the
¢-direction, and it follows that the only non-zero com-
ponent of the vector potential in this case is A4. The
potentials are then found to be of the forms,

V= Zm: @] (k7)) P .(cost)

n=0

and

© d
A¢= z bnj,,(kgr)gP,,(cos()).

n=0

Pressure in the incident wave is represented by”

pi= Py exp(— jkaz)= Pq exp(— jkar cosf)

=Py (2nt-1)(= ) lkar) Palcost).

n=0
~

The outgoing scattered wave will be of the form,
pa= 2. cul Julksr)— jna(ker) JP n(cosh). (27)
n=0

The same boundary conditions at the surface of the
scatterer are applied to the expressions for displacement,
pressure, and dilatation, which are either given above
or derivable from the above. In spherical coordinates
the stress components are

[rr]=NA+2udu,/dr=2p1c?[ (6/1—20) A+ du,/dr ],

oug uy 10u,
[ro]= #[——— —+- ],
or r r a6

7 See reference 2, second edition, p. 354.
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and
1 du, duy; u,
[’¢]=u[ . +———]-
rsing 38 dr r

By carrying the analysis through as in the cylindrical
case, we find that

Cn= —P0(2n+1)(_‘j) nH Sinﬂﬂ exp(jnﬂ)) (28)

where the phase-shift 9, of the nth scattered wave is
defined by

tann,=tand ,(xs)[ tan® ,+tana,(x;) )/

FARAN,
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The intermediate angles,

8a(%) =tan™"[ — ju(x)/na(x)],
an(x)=tan [ —axj./(x)/ju(x)],
Bn(x)=tan [ —an,'(x)/n (x)],

have been defined and their values tabulated previ-

ously.® The boundary impedance phase-angle &, is
defined by
tan¢n= - (PS/PI) tang‘ﬂ(xlx 0')) (29)

where the new scattering phase angle {.(xy, o) is given

tan®,+tanB.(xs). by
%172 (%1) 2(n*+-n) 7 n(x2)
x? 21fn' () = Fa(2) (41— 2)f () + 2227 " (22)

Ealxy, ¢)=tan"!| ——

2 (o/1=20)as[f n(1) — 70" (x1)] 2 m)Lgn(ma) —2aja () ]

%174 (21) —Fa(1)

(P tn—2) () + 2% " (32)

This function can be expressed in terms of the angle o, (x):

tana,(x;)

n’+n

x22

tane,(x;)+1

nin—1—L1x2 4 tana,(x,)

a2y, ¢y=tan™!| ——

(30)

2 n4n—1x,242 tana,(x) (n*+n)[ tanan(xa)+1]

tana,(x)+1

Values of this function computed from Eq. (30) for ¢ =1
are given in Table IT. The dotted lines again indicate the
infinities of tan{ .(x,, ¢), that is, the normal modes of
free vibration of the scatterer.

The distribution in angle of pressure in the scattered
wave at large distances from the sphere is found from
Egs. (27) and (28) by means of the asymptotic expres-
sions for the spherical bessel functions for large argu-
ments:

Py =
[#] 2| (20t1) sinn exp(jna) Paloost) . (31)
3 n—=

III. EXPERIMENTAL APPARATUS

Measurements of the distribution-in-angle of sound
scattered in water by metal cylinders were made for the
purpose of checking the theory. These measurements
were made in a large steel tank at or near a frequency
of one megacycle per second. A sound projector in one
end of the tank irradiated the scatterer with sound. A
receiving hydrophone was mounted in such a way that
it could easily be moved to any position lying on a circle
concentric with the scatterer, and served to measure the
distribution in angle of the pressure in the scattered
wave. Short wave trains or “pulses” of sound were used
in order that the measurement of each pulse could be
effectively completed before sound reflected from the
walls of the tank could reach the receiving hydrophone.
A novel feature, frequency modulation of the pulse

n+n—1—Jx:>tana ,(x2)

repetition rate, served to identify interfering pulses
which, still reverberating in the tank from the previous
transmitted pulse, happened to arrive at the receiver at
the same time as the pulse to be measured. A small
adjustment of the average pulse repetition rate was
effective in controlling interference of this type. Both
transducers employed x-cut quartz crystals operated at
resonance. Serious distortion of the short (64 usec)
pulses by the transducers was prevented by lowering the
Q of the quartz crystals by increasing the radiation
loading. This was accomplished by inserting between
the crystals and the water an acoustic quarter-wave
transformer in the form of a thin disk of Plexiglas. The
amplitude of the scattered sound pulses was measured
by a modified substitution method, an oscilloscope being
used as an indicator. The pulses were brought to a
standard deflection on the oscilloscope, changes in the
pulse amplitude being compensated by changes in the
attenuation in the receiving system.

IV. COMPARISON OF THEORY AND EXPERIMENT

The experimental data were normalized so that they
could be compared with scattering patterns computed
from the theory. In order to do this, the amplitude of
the pressure in the incident wave (P,) was measured by
moving the receiving transducer to the position of the

8 See reference 3. Care must be taken to distinguish between the

cylindrical and spherical cases, since the same symbols are used for
the scattering phase-angles in both cases.
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TABLE II. Values of {.(x:, o) for the spherical case for o=1.

x1 n=0 n=1 n=2 ne3 n=4 n=$ n=6 n=7 n—8 n=9
00 000°  —4500° 0.00° 0.00° 0.00° 0.00° 0.00° 0.00° 000°  0.00°
0.2 116  —4472 3.05 1.94 1.41 1.13 0.96 081 0.73 0.64
04 466  —43.57 12.77 7.77 591 1.66 391 3.33 293 2.62
0.6 1058  —41.62 2997 17.88 13.38 10.38 8.73 7.50 6.58 5.88
08 1889  —3854 51.40 3155 2347 18.83 1593 13.58 1219 1101
1.0 212  -33.76 7041 46.79 3544 28.67 24.25 20.74 1832 1609
1.2 4028  —26.18 83.89 60.52 4788 3920 33.22 29.67 2584  23.32
14 51.05 ~12.80 8694 71.44 58.67 50.00 43.23 38.34 3449 3151
1.6 60.55  +1687  —80.31 79.64 67.68 59.02 52.20 46.57 4241 3872
18 68.41 8015  —7500 85.78 74.68 66.42 50.69 54.53 4980 4577
2.0 7478 2558  —7020 8946 80.14 72.50 66.17 60.82 5628  52.29
22 79.92 +984  —6527  —85.58 84.46 77.29 71.50 66.61 6227 5830
24 84.14 3055  —359.50  —82.18 87.97 81.17 75.75 7113 6713  63.16
2.6 87.71 48.97 Z52.57 —78.94 —89.07 84.39 79.27 74.89 7111 67.61
28 ~89.15 61.45 —41.61 —7541 —86.44 87.06 82.18 78.10 7462 7107
30 —862 7009  —2503  —70.56  —8395 89.38 84.63 80.80 7741 7443
32 —83.36 76.48 —0.51 —5548  —8137 8853 86.75 83.03 7987  77.00
34 —80.31 81.81 +27.37 —8131 —78.27 —86.56 88.61 84.98 8193  79.23
36 —1612 88.64 4905  —68.79  —7344  —8457  —89.70 86.69 8375  81.23
38  —7200 7541 6324  —5085  —5037  —8235  —88.10 88.21 8533 8288
40  —6484 85.64 7299  —4706  +6507  —7948  —86.50 89.61 8671  84.30
42 —51.66 89.00 81.77 —24.13 Zg74l —7470  —8481 ~89.07 8799  85.62
44 —-2239 8845 26512 41338 —80.54 —60.64 —82.81 —87.76 89.17 8681
46 42620 —86.12 +73.10 4764  —75.60 44849 —80.07 —86.41 ~89.71  81.88
48 5658  —83.70 80.80 68.81 —70.16 8465  —75.21 —8190  —88.62 8889
50 70.03 —80.89 84.41 ~88.10 —62.36 ~88.16 —60.25 —83.03 —87.50 8985

scatterer. After normalization, it was still necessary to
add a factor amounting to 1.9 db to the amplitude of the
scattered sound in order to bring the experimental data
into good agreement with the theory. This correction
factor has been explained, and its value computed with
good accuracy, by taking into account the fact that the
illumination of the scatterer varies in phase and ampli-
tude along its length.®

The part of Eq. (26) which was evaluated in com-
puting the patterns was

-]
3| X €n sinn, exp(jnn) cosnd|,
()

and the corresponding numerical scale is shown on all
the patterns used as illustrations. The values of Poisson’s
ratio for the various scatterers were assumed, because
of the difficulty of measuring this constant directly ; but

9J. J. Faran, Jr., Sound Scattering by Solid Cylinders and
Spheres, Technical Memorandum No. 22 (March 15, 1951),
Acoustics Research Laboratory, Harvard University, Cambridge,
Massachusetts.

the values of Young’s modulus were measured (to
within &5 percent) by finding the frequency of the first
mode of flexual vibration of the cylindrical specimen
mounted so that it could vibrate as a fixed-free bar. The
value of x; was then determined by means of Eq. (5). In
some cases where the pattern was very sensitive to fre-
quency, it was necessary to choose a value of x, slightly
different from that based on the Young’s modulus
measurement in order to bring the measured and
computed patterns into agreement. Comparison of the
value of Young’s modulus corresponding to the assumed
value of x; with the measured value serves in these cases
to indicate the degree of agreement between experiment
and theory.

Figures 3 through 13 are measured and computed
scattering patterns for cylinders of various sizes. The
pressure in the scattered wave is plotted linearly against
scattering angle. In each case the arrow indicates the
direction of the incident sound. The angle ¢ is measured
from the top center of the graph, the incident sound
coming from the direction =180°. For each size of
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Fie. 3. Scattering pattern for brass cylinder 0.0322 in. in
diameter at 1.00 mc/sec. Points: Measured amplitude of pressure
in the scattered wave. The measured Young’s modulus was 10.1
X101 dynes/cm?. Curve: Computed pattern for x;=1.7, %,=0.6,
o= %—, p1=8.5 g/cm"’. PR ' '

scatterer, the pattern computed on the basis that the
scatterer is rigid and immovable is included for com-
parison.

Figures 3 and 4 show scattering patterns for brass and
steel (drill rod) cylinders of the same size, for each of
which x3=1.7. These patterns are both very similar to

that for a rigid, immovable scatterer of the same size - -

(Fig. 5).

Figures 6-8 show scattering patterns for cylinders of
various materials twice as large in diameter, that is,
x3=3.4. The pattern for a brass cylinder of this size

F16. 4. Scattering pattern for steel cylinder 0.032 in. in diameter
at 1.00 mc/sec. Poinfs: Measured amplitude of pressure in the
scattered wave. The measured Young’s modulus was 20.0X 101
dynes/cm?, Curve: Computed patternYforfxi=1.7, x=045,
¢=0.28, p,=7.7 g/cm®.

FARAN, JR.

Fi6. 5. Computed amplitude of \;;ressure in.wa.ve\ scattered by a
rigid, immovable cylinder for x;=1.7.

(Fig. 6) is somewhat unusual; the amplitude of sound
scattered back in the direction of the source is nearly
zero. This near-null in the back-scattered sound is fully
explained by the mathematical solution in which the

Fig. 6. Scattering pattern for brass cylinder 0.0625 in. in diame-
ter at 1.02 mc/sec. Points: Measiired-amplitude of pressure in the
scattered wave. The measured Young’s modulus was 10.4X 101
dynes/cm?. Curve: Computed pattern for x;=3.4, x=1.185,
a=3, ;=8.5 g/cm? (corresponding to E=10.5)X10" dynes/cm?).

!, 1)
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SCATTERING BY CYLINDERS AND SPHERES

term for #=2 in the series for the scattering pattern
suddenly becomes very large in amplitude and of the
proper phase to cancel the sum of all the other terms at
6=180°. This, in turn, is brought about by the presence
of an infinity in the tan{.(xy, ¢) function for s=1} at
x,=1.18- -+ (corresponding to a normal mode or reso-
nance of the scatterer), in the neighborhood of which this
function goes rapidly through a wide range of values
causing the variations in the coefficient of the »=2
term. The value of x, for the computed pattern of
Fig. 6 was chosen to give a deep notch at §=180°, and
the frequency at which the experimental pattern was

Fi6. 7. Scattering pattern for copper cylinder 0.0625 in. in
diameter at 1.00 mc/sec. Poinis: Measured amplitude of pressure
in the scattered wave. The measured Young's modulus was
119X 10" dynes/cm?. Curve: Computed pattern for xa=3.4,
x1=108, s=%, ;=89 g/em? (corresponding to E=12.7X10"
dynes/em?).

measured was chosen the same way. Figure 7 is the
scattering pattern for a copper cylinder of the same
size. The value of x; for the copper cylinder is near
enough to 1.18 that the coefficient of the »=2 term is
still large, but in this case it is of the opposite phase and
causes the sound scattered in the direction #=180° to be
somewhat larger in amplitude than that scattered by a
rigid, immovable cylinder of this size (Fig. 9). The
velocity of sound in steel is so much higher than that in
brass or copper that this scatterer behaves nearly as
though it were rigid and immovable, and its scattering
pattern (Fig. 8) is little different from that for the rigid,
immaovable case.
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F16. 8. Scattering pattern for steel cylinder 0.0625 in. in diame-
ter at 1.00 mc/sec. Points: Measured amplitude of pressure in the
scattered wave. The measured Young’s modulus was 19.5X 101t
dynes/cm?. Curve: Computed pattern for x;=3.4, x,=0.9, =0.28,
m=171.7 g/cmd. —

Figures 10, 11, and 12 are scattering patterns for
brass, steel, and aluminum cylinders for which x;=5.0.
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F16. 9. Computed amplitude of pressure in wave scattered by a
rigid, immovable cylinder for x;=3.4.
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Fic. 10. Scattering pattern for brass cylinder 0.093 in. in diame-
ter at 1.015 mc/sec. Points: Measured amplitude of pressure in the

scattered wave. The measured Young’s modulus was 10.0X101-

dynes/cm?®. Curve: Computed pattern for x;=5.0, 2= 1.78, o=},
p=8.5 g/cm? (correspanding to E=10.2XX10" dynes/cm?).

The frequency of measurement of the pattern of the
brass scatterer was chaosen to give the deepest notch at
120°, and the value of x, was*chosen to make the
patterns agree. The choice of the value of x; is well
substantiated by the measurement of the Young’s
modulus of this scatterer, since the value of E corre-
sponding to the chosen value of #, is within 2 percent of
the measured value. Figure 11 shows that, just as in the
case of brass (Fig. 4), there is a near-null in the sound
back-scattered from a steel cylinder at a frequency near
that of the lowest-frequency normal mode which, for
a=0.28, occurs at x,=1.30- - - Figure 12 shows that the
same is true of an aluminum scatterer of the same size.
Although the velocity of compressional waves in steel is
not the same as that in aluminum, the values of Poisson’s
ratio differ sufficiently that this normal mode occurs in
these two materials for the same physical size of the
scatterers. These two patterns are so similar that they
are seen to depend much more critically upon the value

~

of x; than upon the density of the scatterer. The pattern
for a rigid, immovable cylinder of the same size is shown
in Fig. 13, and it is apparent that all these patterns for
metal cylinders of this size bear little resemblance to
this imiting case.

The theory thus verifies the existence of nulls in the
back-scattered sound for cylinders of various metals,
and at the proper frequencies ; but a further test is to see
whether it predicts properly the manner in which the
amplitude of the back-scattered sound (and the shape of
the entire pattern) changes with frequency. In order to
test this, patterns were measured for the brass cylinder
of Fig. 6 and the steel cylinder of Fig. 11 at two other
frequencies, 3 percent below and above that at which the
reference patterns were measured. The corresponding
patterns predicted by the theory were computed by
making a corresponding change in the values of the x
parameters. In Fig. 14, the pattern of Fig. 6 is repro-
duced in the center, and those for 3 percent changes in
frequency are shown at either side. In Fig. 15, the
pattern of Fig. 11 is reproduced in the center, and the
patterns for 3 percent changes in frequency are shown on
either side. The theory is seen to predict the changes in
the measured patterns with gratifying precision. These
groups of patterns also emphasize the fact that the null

d )
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Fie. 11. Scattering pattern~for steel cylinder 0.09375 in. in
diameter at 0.99 mc/sec. Points: Measured amplitude of pressure
in the scattered wave. The measured Young’s modulus was
19.3X10" dynes/cm?. Curve: Computed pattern for x;=35.0,
%= 1.293, ¢=0.28, p,=7.7 g/cm? (corresponding to E=19.7 X101
dynes/cm?).

JAMES J. FARAN, JR. e
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SCATTERING BY CYLINDERS AND SPHERES

in the back-scattered sound is very sensitive to
“frequency.

Measurements of scattering by a few spheres were
made with this apparatus. However, because the sound
scattered by a sphere diverges in three dimensions
(instead of two, as in the case of a long cylinder), the
measurement was found to be very difficult, because of
the reduced margin of signal to noise. The measure-
ments (and also computations) indicate that, although
rapid changes in the pattern do occur, there is no null in
the sound back-scattered in water by a brass sphere,
near its lowest-frequency normal mode of vibration.

V. REMARKS ON THE BEHAVIOR OF SOLID
SCATTERERS

It is interesting to examine the behavior of certain of
the functions which appear in the mathematical solu-
tion, especially the tan{.(x), ¢) functions. As noted
above, it can be shown that the infinities of the
tan{ .(x;, ) functions occur at precisely the frequencies
of those normal modes of free vibration of the scattering
body which satisfy the conditions of symmetry of the
scattering problem. This can be done by applying
boundary conditions to expressions for displacement and
dilatation written in general form in terms of an un-
known frequency. The boundary conditions, for free
vibrations, are simply that the normal component of
stress and the tangential components of shearing stress

2.0

F16. 12. Scattering pattern for aluminum cylinder 0.0925 in. in
diameter at 1.00 mc/sec. Points: Measured amplitude of pressure
in the scattered wave. The measured Young’s modulus was
7.0X10" dynes/cm?. Curve: Computed pattern for x3=35.0,
£,=117, o=1, p=2.7 g/cm® (corresponding to E=7.2X10"
dynes/cm?).
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Fi16. 13. Computed amplitude of pressure in wave scattered by a
rigid, immovable cylinder for x3=5.0.

at the surface of the body must both vanish. Solving the
resultant equation for frequency (in terms of unknown
%1 and x, parameters) gives a condition which, in the
cylindrical case, is identical to requiring the denomi-
nator of Eq. (24) to vanish.!® For ¢=1}, the first few of
these normal modes occur at the following values of the
frequency parameter:

for =0, x,=217---, 543.--, 8.60---;
for n=1, ©=143--., 3.27-.-, 3.74---;
for n=2, x=118---, 2.25:--, 3.98---;
for =3, =181+, 3.01---, 4.65---;
for n=4, x,=2.36---, etc.

The first normal modes for #=1, 2, and 3 occur for lower
values of x, (lower frequencies) than that for #=0,
contrary to what we might expect. The reason for this is
that there are no shear waves associated with the =0
normal modes. The complicated wave structure which
comprises a normal mode can be realized at a much
lower frequency with shear waves than without, be-
cause the velocity of shear waves is so much lower than
that of compressional waves.

For fluid scatterers, the functions tan{ a(x), o) in
Eqgs. (23) and (29) are replaced® by the functions

19 For details of this demonstration, see reference 9.

7,
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FiG. 14. The scattering pattern of Fig. 6 repeated for comparison with measured and computed patterns for frequencies
3 percent higher (right) and 3 percent lower (left).

tana,(x;). It is interesting to note that the infinities of
these functions also correspond to frequencies of normal
modes of free vibration of the (fluid) scatterer, since the
infinities of tane,(x;) occur at the zeros of J.(x1) or
fn(x1), in the cylindrical and spherical cases, respectively.

The coefficient ¢, in the series for the scattering pat-
tern does not attain its maximum value at exactly the
frequencies of the normal modes of free vibration of the
scatterer. Since the amplitude of ¢, is proportional to
sinn,, ¢, reaches its maximum value when tany, be-
comes infinite. This represents a shift in the resonant
frequency of the normal mode, and this shift is attributed
to the reactive component of the acoustic impedance
presented to the scatterer by the surrounding fluid, i.e.,
the reactive component of the radiation loading. In the
case of solids having densities greater than that of the

surrounding fluid, however, this frequency shift is
usually small.

While measurements were being made with the ex-
perimental apparatus at frequencies near that of a
normal mode, it was in some cases possible to observe
“ringing” of that normal mode following the end of the
pulse; that is, long transients could be observed at the
end (and at the beginning) of the scattered pulse. By
adjusting the frequency to give the maximum amplitude
of the transient at the end of the pulse, it was thus
possible to measure the frequencies of various normal
modes. It was also possible to identify the order 7 of the
excited mode, because the amplitude of the transient
following the pulse was proportional to cosnf. These
transients were not noticeable in the case of the first
normal mode for »=2. Apparently the damping by

2.0
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F1G. 15. The scattering pattern of Fig. 11 repeated for comparison with measured and computed patterns for frequencies
3 percent higher (right) and 3 percent lower (left).
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SCATTERING BY CYLINDERS AND SPHERES

radiation into the water was great enough to cause any
ringing to die out quickly. However, the fitst normal
modes for =0, 1, and 3 were observed and identified
for brass and steel cylindrical scatterers of appropriate
sizes and showed good agreement with the frequencies
predicted by the theory.

That there are sizeable shifts in the frequencies of the
normal modes with changes in Poisson’s ratio suggests
that finding the frequencies of one or more of these
normal modes of vibration might provide a method of
measuring Poisson’s ratio for cylindrical or spherical
specimens. The variation of the frequencies of these
normal modes with Poisson’s ratio is illustrated in
Figs. 16 and 17, where the values of x; at which the first
normal modes for #=0, 1, 2, 3, and 4 occur are plotted
as functions of Poisson’s ratio. The variation of the
second normal mode for #=2 is also shown in the graph
for the spherical case. In this connection, as well as in
the scattering problem itself, the potential utility of
having the {.(x1, o) functions computed for a wide
range of values of Poisson’s ratio will be evident. A
computation program to yield these results appears to
be justified. The frequencies of the normal modes cannot
be computed explicitly, but can be found easily from the
locations of the infinities of the tan{ .(x;, o) functions.

It is interesting to compare the behavior of the tan®d,
functions for solid and fluid scatterers as x;, the fre-
quency parameter for the scatterer, approaches zero.
For solid scatterers, either cylindrical or spherical, as
x;—)O,

tan‘pn_)o, n#l ) tan‘bl—)pa/pl H

while for fluid scatterers, where

tanCI),. = (— pa/pl) tana ,.(xl),
as x,—0,
tan® .~ (pa/ p1)n.

In neither case, by letting x,—0, do we realize the case
of the rigid, immovable scatterer where tan®, =0 for all
n. In order that x;=wa/c;—0 at finite frequencies in the
solid case, the velocities of both the compressional and
shear waves must become infinite, and the scatterer does
indeed become rigid. The only term where tan®, does
not vanish is that for »=1. This deviation from the
rigid, immovable case is simply due to oscillation of the
scatterer as a whole in synchronism with the incident
sound field. Thus, by setting ;=0 in the solution given
here for solid scatterers, we can calculate the scattering
from a rigid, movable cylinder or sphere of density p;. To
pass to the case of the rigid, immovable scatterer, we
must also require that the density of the scatterer be-
come infinite. In the case of a fluid scatterer, as x,—0,
only tan®, approaches the value for the limiting case of
a rigid, immovable scatterer. For n=1, tan®, behaves
in the same way as in the case of the solid scatterer, and
represents oscillation of the scatterer in synchronism
with the incident sound. Now, for fluid scatterers, in
order that x,—0 at finite frequencies, it is necessary that
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FiG. 16. The values of x, for the first few symmetrical normal
modes of free vibration of a solid cylinder plotted as functions of
Poisson’s ratio.

the fluid become incompressible; but as this happens,
the scatterer does not necessarily become rigid to shear
distortions. It must then be that, for =2 and higher,
shape distortions of the incompressible fluid scatterer
make the components of the scattered wave different
from what they would be if the scatterer were rigid.
Because the fluid scatterer never becomes rigid as x,—0,
one can only pass from this solution to the case of the
rigid, immovable scatterer by letting the density become
infinite.

- Two summary comments can be added regarding the
general features of scattering hy solid cylinders and
spheres. If the frequency of the incident sound is lower
than that of the first symmetrical normal mode of free
vibration of the solid scatterer, and if the density of the
scatterer is greater than that of the liquid, there is little
difference between the scattering pattern for the solid
scatterer and that for a rigid, immovable scatterer. But,
rapid changes in the shape of the scattering pattern and
in the total scattered power (or scattering cross section)
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F1c. 17. The values of x, for the first few $ymmetrical normal
modes of free vibration of a solid sphere plotted as functions of
Poisson's ratio.
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can occur with small changes in frequency in the vicinity
of certain of the normal modes of free vibration of the
solid scatterer. These changes include the appearance of
deep minima in the scattering pattern at certain angles
and may include, for cylinders, a near-null in the sound
scattered back toward the source.
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The Growth of Subharmonic Oscillations
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Subharmonic oscillations at one-half the frequency of excitation may appear in certain types of oscillating
systems, among which is the direct-radiator loudspeaker. These oscillations occur at very nearly the resonant
frequency of the system when the parameters of the system are made to vary at twice this frequency. The
rate of growth of the subharmonic depends upon the amount of variation of the parameters relative to the
dissipation in the system. If the dissipation is small, the rate of growth may be large. In the loudspeaker,
conditions are such that the rate of growth is usually small for typical conditions of operation.

HE generation of subharmonic oscillations by a
direct-radiator loudspeaker has often been ob-
served.r Such oscillations usually occur at one-half the
frequency of the current supplied to the loudspeaker,
and appear for only certain discrete frequencies near the
center of the audio spectrum. In most cases, the
subharmonic is not present unless the loudspeaker is
being operated near its maximum power. When present,
the subharmonic is easily audible, even though sound
pressure measurements indicate the amplitude of the
subharmonic is only a few percent relative to the funda-
mental. The statement has been made that this sub-
harmonic distortion is usually of little practical im-
portance in the operation of the loudspeaker.® The
reasoning is based on the observed fact that an ap-
preciable length of time is required for the amplitude of
the subharmonic to grow to its ultimate value. Since
typical program material is of constantly changing
nature, there is little opportunity for the subharmonic
to build up. In the following rather simple discussion,
the growth of the subharmonic oscillation is considered
with the intent of determining what factors influence the
rate of growth and why this rate is low for the loud-
speaker.
Subharmonic oscillation at one-half the frequency of
an exciting force may occur in oscillating systems having

1H. F. Olson, Acoustical Engineering (D. Van Nostrand Com-
pany, Inc., New York, 1947), p. 167.

2P, 0. Pederson, J. Acoust. Soc. Am. 6, 227238 (1935), and 7,
64-70 (1935).

3 F. von Schmoller, Telefunken Zeitung 67, 47-54 (June, 1934).

4 G, Schaffstein, Hochfrequenztechn. Elektroakust. 45, 204-213
(1935).

5 See reference 2. Also, H. S. Knowles, “Loudspeakers and room
acoustics,” Sec. 22, Henney's Radio Engineering Handbook
(McGraw-Hill Book Company, Inc., New York, 1941), p. 902.

a single degree of freedom.5? For the subharmonic to
appear, the quiescent resonant frequency of the system
must be very nearly one-half the exciting frequency.
Further, operation must be such that under excitation
the resonant frequency of the system is caused to vary
at the exciting frequency. This variation must take
place in such a way that sufficient energy is being sup-
plied to the system to replace that lost by dissipation. If
more than this amount of energy is supplied, the ampli-
tude of the subharmonic grows, in theory, without limit.
Ultimately, in practical systems, some additional effect
takes over and the amplitude achieves a steady value.

In order to give a simple example of this type of
operation, an electric circuit will be considered in some
detail. This circuit contains in series combination an
inductance L, a resistance R, and a capacitance C. If ¢
is the instantaneous charge on the capacitance, the sum
of voltages around the circuit is

Lig+Rj+q/C=0, M

where dots indicate time derivatives. In some way the
capacitance is made to vary sinusoidally in time by an
amount AC about the mean value Cy. The instantaneous

capacitance is
C=C0(1+a sinZo.ut), (2)

where the angular frequency of the variation is taken as
2w, and e=AC/C,. Evidently a can never exceed unity.
It is possible to show that such a variation in capaci-
tance can add energy to the oscillating circuit. The
resonant angular frequency of the circuit in its quiescent

& N. Minorsky, Nonlinear Mechanics (Edwards Brothers, Inc.,
Ann Arbor, 1947), Chap. XIX.

?N. W. McLachlan, Ordinary Nonlinear Differential Equations
(Oxford University Press, London, 1950), Chap. VIL.



