
MATH547 Final Examination

Fall 2014 Semester, December 9, 2014

Instructions. Answer the following questions. Provide a motivation of your approach and
the reasoning underlying successive steps in your solution. Write neatly and avoid erasures.
Use scratch paper to sketch out your answer for yourself, and then transcribe your solution to
the examination you turn in for grading. Illegible answers are not awarded any credit. Pre-
sentation of calculations without mention of the motivation and reasoning are not awarded
any credit. The last, seventh question is optional and o�ered to enable raising your score
on the midterm examination. Each complete, correct solution to an examination question is
awarded 4 course grade points. Your primary goal should be to demonstrate understanding
of course topics and skill in precise mathematical formulation and solution procedures.

1. Consider a block partitioning of a square matrix M 2Rm�m

M =

�
A B
C D

�
(1)

with A;B;C;D compatible submatrices. Compute�
I 0

¡CA¡1 I

�
M: (2)

Solution. Carry out block multiplication�
I 0

¡CA¡1 I

��
A B
C D

�
=

�
IA+0C IB+0D

¡CA¡1A+C ¡CA¡1B+D

�
=

�
A B
0 D¡CA¡1B

�
2. Again consider the block partitioning (1) of matrix M 2Rm�m. Use the result from (2)
and the identity ���� A B

0 D

����= jAj jD j (3)

to prove that if AC =CA then

det(M)= jM j= jAD¡CB j:

Solution. Recall that determinant of matrix product is equal to product of matrix determi-
nants and apply to result from Problem 1���� I 0

¡CA¡1 I

�������� A B
C D

����= ���� A B
0 D¡CA¡1B

����
Use (3) to obtain

det(M)= jAj jD¡CA¡1B j
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Product of matrix determinants is determinant of matrix product rule gives

det(M)= jA(D¡CA¡1B)j= jAD¡ACA¡1B j

If A;C commute (AC =CA) then

det(M)= jAD¡CB j:

3. Consider the matrix V 2R3�3

V =

0@ 1 1 3
1 ¡2 0
1 1 ¡3

1A
with mutually orthogonal column vectors V1; V2; V3 2R3: What is the volume of the paral-
lelepiped with edges V1; V2; V3?

Solution. Since vectors are orthogonal the volume is simply the product of each vector norm

V = 3
p

6
p

18
p

= 18:

(Of course there are longer ways to do this also)

4. Find the eigenvalues and unit eigenvectors of

A=

0@ 2 2 2
2 0 0
2 0 0

1A:
Solution. Columns 2,3 are repeated and linearly independent from column 1, so rank(A)=2
and �3=0 must be an eigenvalue and the row-echelon reduction0@ 2 2 2

2 0 0
2 0 0

1A�
0@ 2 2 2

0 ¡2 ¡2
0 ¡2 ¡2

1A
leads to eigenvector x3=

1

2
p (0; 1;¡1)T . The characteristic polynomial of A is

det(A¡�I)=�2(2¡�)+ 8�=¡�(�¡ 4)(�+2)

Row echelon reduction for A¡�2I, �2=¡2 gives0@ 4 2 2
2 2 0
2 0 2

1A�
0@ 4 2 2

0 1 ¡1
0 ¡1 1

1A
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with resulting eigenvector x2=
1

3
p (¡1; 1; 1)T . Repeating for �1=4 gives

0@ ¡2 2 2
2 ¡4 0
2 0 ¡4

1A�
0@ ¡2 2 2

0 ¡2 2
0 2 ¡2

1A
and x3=

1

6
p (2; 1; 1)T .

5. Show that the eigenvalues of a skew-symmetric real matrix, A 2 Rm�m, AT = ¡A are
purely imaginary.

Solution. Consider the eigenvalue relation Ax = �x, it's conjugate A x� = �� x�, and the
transpose x�TAT =��x�T =¡x�TA. From these form scalar products

Ax=�x)x�TAx=�x�Tx

x�TA=¡��x�T) x�TAx=¡��x�Tx

Subtract to obtain

0= (�+��)x�T x

But x is an eigenvector, hence x =/ 0 such that � + �� = 0. With � = u + iv deduce
u+ iv+u¡ iv=2u=0, hence � has zero real part (purely imaginary)

6. Compute the singular value decomposition of

A=

0@ 1 0 1
0 1 0
1 0 1

1A:
What is rank(A)?

Solution. The matrix A is symmetric and real valued hence can be diagonalized A=U�UT

with U an orthogonal matrix. The eigendecomposition is also a singular value decomposition
A=U�V T with �=� (assume eigenvalues are ordered in diminishing magnitude) and U=V .
The matrix A has a repeated column vector in positions 1,3, linearly independent from
column 2, hence rank(A) = 2 and one of the eigenvalues must be 0, �3= 0 with associated
eigenvector x3 = (1; 0; ¡1). From observation of the structure of A (column vector 2 has
no components along 1,3) one of the eigenvectors is x2 = (0; 1; 0)T with eigenvalue �2 = 1.
Completion of 0@ 0 1

1 0
0 ¡1

1A
3



to form an orthogonal basis for R3 gives

X =

0@ 1 0 1
0 1 0
1 0 ¡1

1A
with �1=2 the eigenvalue associated with x3=(1; 0; 1)T . Bring X to normalized form

U =

0B@ 1/ 2
p

0 1/ 2
p

0 1 0

1/ 2
p

0 ¡1/ 2
p

1CA
to obtain the SVD

A=U�UT ;�=diag(2; 1; 0):

7. Revisit the midterm problem of computing A200 with

A=

0BB@
1 0 1/2 1/2
0 1 1/2 1/2
0 0 1/2 1/2
0 0 1/2 1/2

1CCA:
Use the eigendecomposition of A=X�X¡1 to compute A200:

Solution. Recognize the block structure

A=
�
I B
0 B

�
and observe that

A

�
I
0

�
=
�
I
0

�
hence two eigenvalue-eigenvector pairs are

�1=1; x1= e1=

0BB@
1
0
0
0

1CCA; �2=1; x2= e2=

0BB@
0
1
0
0

1CCA:
Row echelon reduction for �=1 gives

A¡ 1 � I =

0BB@
0 0 1/2 1/2
0 0 1/2 1/2
0 0 ¡1/2 1/2
0 0 1/2 ¡1/2

1CCA�
0BB@

0 0 1 1
0 0 1 1
0 0 ¡1 1
0 0 1 ¡1

1CCA�
0BB@

0 0 1 1
0 0 0 0
0 0 0 2
0 0 0 ¡2

1CCA�
0BB@

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

1CCA
The dimension of the null space of A¡1 �I, i.e., the geometric multiplicity of �=1 is 2 less than the algebraic
multiplicity. The eigenvector matrix is therefore singular, and the matrix A cannot be diagonalized as
A=X�X¡1. To compute A200 we have to proceed as in (cf.) the midterm solution and obtain

A200=
�
I 200B
0 B

�
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