
MATH547: Linear algebra for applications January 20, 2017

Homework 1

Due date: Feb 3, 2017, 11:55PM.
Bibliography: Course lecture notes Lessons 1-8.

Note: Save this file as Homework1Solution.tm in your /home/student/courses/MATH547/homework
directory. Then carry out your work on solving the problems in TeXmacs. Submit your �nal version through
Sakai. If you've understood the theoretical concepts reviewed in the Background section, each problem should
require about 20 minutes to complete, hence the entire homework can be completed within 3 hours. The
exercises are from p.131 of the textbook, an image of which is included at the end.

1 Background

1.1 Objectives

In Homework 1 you start exploration of the the mathematical constructs introduced to answer the ques-
tion: �What are the solutions of the linear system Ax=b?�. The goal of this homework is to understand the
concepts of vector spaces, in particular the fundamental spaces associated with a matrix and their signi�cance.
The four theory problems investigate these concepts both through symbolic exercises and small numerical
applications. Small examples of how to solve the requested exercises are included. The computer application
mirrors these questions using musical notation as one example of the many uses of linear algebra. These
concepts build up to the Rank Nullity Theorem , or Fundamental Theorem of Linear Algebra that answers the
question on existence and number of solutions to a linear system.

1.2 Concept review

1.2.1 Column, null spaces
An unfortunate consequence of the wide-spread use of linear algebra is that multiple names are used for the
same concept. In particular, for a matrix A2Rm�n;A=(a1:::an), the image of A is the same as the column
space or range or span of columns of A

im(A)=C(A)= range(A)= spanfa1; :::;ang= fb2Rmj 9x2Rn such that b=Axg�Rm:

Similarly the kernel of A is the same as the null space of A

N(A)=null(A)= fx2RnjAx=0g�Rn:

We shall use C(A); N(A) as the preferred notation.

1.2.2 Vector spaces, subspaces
Also, vector spaces and linear spaces refer to the same mathematical concept, often denoted as (V ; S ; +)
consisting of a set of vectors V , a set of scalars S, an addition operation between vectors and a multiplication
operation between scalars and vectors that satisfy the following properties for arbitrary u;v ;w2V , �; � 2S
Closed. u+v 2V
Associativity. u+(v+w)= (u+v)+w

Null element. 902V such that u+0=u
Inverse element. 9(¡u) such that u+(¡u)= 0
Commutativity. u+v=v+u
Distributivity over scalar addition. (�+ �)u=�u+ �v

Distributivity over vector addition. �(u+v)=�u+�v

Scalar identity. 12S)1u=u

It is very useful to separate a vector space into �smaller� parts. The relevant mathematical construct is that
of a vector subspace



De�nition. U is a vector subspace of vector space V over the same scalar �eld S if for any u;v2U, any �; �2S
Inclusion. u2V (a vector in the subspace is also in the enclosing vector space)
Closed. �u+ �v 2U (linear combinations of subspace vectors stay within the subspace)

1.2.3 Linear transformations, mapping
Matrices are closely related to the concept of a linear transformation or linear mapping

De�nition. A linear mapping is a function between two vector spaces X ;Y over the same scalar �eld S, f :
X 7!Y, with the property that 8u;v 2X, 8�; � 2S

f(�u+ �v)=�f(u)+ �f(v)

A matrix A2Rm�n is a linear mapping from the vector space (Rn;R;+) to the vector space (Rm;R;+)

A:Rn 7!Rm

x2Rn; b2Rm; b=Ax

The fundamental spaces C(A); N(A) are vector subspaces of Rm;Rn respectively, which we denote by

C(A)�Rm; N(A)�Rn:

1.2.4 Linear independence, basis set
The basic operation within linear algebra is the linear combinationAx, and one fundamental question is what
vectors b are reachable by a linear combination (i.e., when does Ax= b have a solution). In addition to the
previous concepts, the �nal mathematical tool used to answer this question is that of linear independence

De�nition. The vectors a1; a2; :::; an 2 V ; are linearly independent if the only n scalars, x1; :::; xn 2 S, that
satisfy

x1a1+ :::xnan= 0; (1)

are x1=0, x2=0,...,xn=0.

Notice that linear independence essentially states a relationship between the vectors a1; :::; an, namely
that none of these vectors can be reached by a linear combination of the others.

De�nition. A set of vectors u1; :::;un2V is a basis for vector space V if:
1. u1; :::;un are linearly independent;
2. spanfu1; :::;ung=V.

2 Theory problems

2.1 Vector spaces
Solve exercises 3.2.2-6. from the textbook, p.131. Solution to exercise 3.2.1 is presented as an example.
Complete the rest.

Ex3.2.1 Solution. Verify subspace property 8u1;u22W ;8�1; �22R)�1u1+�2u22R. Since u1;u22W ,
we have

u1=

0@ x1
y1
z1

1A;u2=
0@ x2

y2
z2

1A;withx1+ y1+ z1=1 andx2+ y2+ z2=1:

Compute

u=

0@ x
y
z

1A=u1+u2=
0@ x1

y1
z1

1A+
0@ x2

y2
z2

1A=
0@ x1+ x2

y1+ y2
z1+ z2

1A:



Note that x+ y+ z=(x1+x2)+ (y1+ y2)+ (z1+ z2)= (x1+ y1+ z1)+ (x2+ y2+ z2)=1+1=2, hence u2/W ,
and W is not a subspace since it does not satisfy closure property.

Ex3.2.2 Solution.

Ex3.2.3 Solution.

Ex3.2.4 Solution.

Ex3.2.5 Solution.

Ex3.2.6 Solution.

2.2 Linear independence
Solve exercises 3.2.14-3.2.18 either through hand computation (until you're con�dent of the procedure) or
using Octave. Solutions to 3.2.19-20 are presented as examples

Ex3.2.19 Solution. Set

A=( a1 a2 a3 a4 a5 )=

0BB@
1 2 0 0 3
0 0 1 0 4
0 0 0 1 5
0 0 0 0 0

1CCA:
Note a2=2a1, a5=3a1+4a3+5a4, hence vectors fa1;a2;a3;a4;a5g are linearly dependent. Vectors a1;a3;a4
are linearly independent and a2;a5 are redundant. Using Octave, the number of linearly independent column
vectors is the rank of the matrix

octave> A=[1 2 0 0 3; 0 0 1 0 4; 0 0 0 1 5; 0 0 0 0 0]

A =

1 2 0 0 3
0 0 1 0 4
0 0 0 1 5
0 0 0 0 0

octave> rank(A)

ans = 3

octave> rank([A(:,1) A(:,3) A(:,4)])

ans = 3

octave>

Ex3.2.20 Solution. Place the vectors as rows and reduce to row echelon form by hand computation

AT =
¡
a1
T a2

T a3
T
�
=

0@ 1 1 1 1
1 2 3 4
1 4 7 10

1A�
0@ 1 1 1 1

0 1 2 3
0 3 6 9

1A�
0@ 1 1 1 1

0 1 2 3
0 0 0 0

1A�
0@ 1 0 ¡1 ¡2

0 1 2 3
0 0 0 0

1A
Deduce that a1;a2 are linearly independent, but a1;a2;a3 are linearly dependent. In Octave

octave> A=[1 1 1; 1 2 4; 1 3 7; 1 4 10]



A =

1 1 1
1 2 4
1 3 7
1 4 10

octave> rank(A')

ans = 2

octave> rref(A')

ans =

1 0 -1 -2
0 1 2 3
0 0 0 0

octave>

Find coe�cients that express a3 as a linear combination of a1;a2
octave> x=[A(:,1) A(:,2)] \ A(:,3)

x =

-2
3

octave> [x(1)*A(:,1)+x(2)*A(:,2) A(:,3)]

ans =

1 1
4 4
7 7

10 10

octave>

Ex3.2.14 Solution.

Ex3.2.15 Solution.

Ex3.2.16 Solution.

Ex3.2.17 Solution.

Ex3.2.18 Solution.

2.3 Null space
Solve exercises 3.2.22-3.2.26 either through hand computation (until you're con�dent of the procedure) or
using Octave. Solution to 3.2.21 is presented as an example



Ex3.2.21 Solution. Denote

A=( a1 a2 )=

�
1 1
1 1

�
;

and notice a1=a2, hence a1¡a2= 0, or

Ax=0;withx=
�

1
¡1

�
and x2N(A). In Octave the null function provides a basis for the null space

octave> A=[1 1; 1 1]

A =

1 1
1 1

octave> null(A)

ans =

-0.70711
0.70711

octave>

The null function always returns an orthonormal set of vectors.

Ex3.2.22 Solution.

Ex3.2.23 Solution.

Ex3.2.24 Solution.

Ex3.2.25 Solution.

Ex3.2.26 Solution.

2.4 Column space

Solve exercises 3.2.29-3.2.33 either through hand computation (until you're con�dent of the procedure)
or using Octave. Solutions to 3.2.27-28 are presented as examples.

Ex3.2.27 Solution. Denote

A=( a1 a2 )=

0@ 1 1
1 2
1 3

1A
and carry out reduction to row echelon form of AT�

1 1 1
1 2 3

�
�
�
1 1 1
0 1 2

�
to deduce that rank(A) = 2 (two non-zero pivots), hence a1;a2 are independent and form a basis for C(A).
In Octave the orth function provides an orthonormal basis set for C(A).



octave> A=[1 1; 1 2; 1 3]

A =

1 1
1 2
1 3

octave> B=orth(A)

B =

0.32311 -0.85378
0.54751 -0.18322
0.77190 0.48734

octave>

To express the basis set found by hand computation in terms of b1; b2, solve the linear systems

octave> x=B \ A(:,1)

x =

1.64252
-0.54966

octave> x(1)*B(:,1)+x(2)*B(:,2)

ans =

1
1
1

octave> y=B \ A(:,2)

y =

3.73384
0.24180

octave> y(1)*B(:,1)+y(2)*B(:,2)

ans =

1.0000
2.0000
3.0000

octave>

Ex3.2.28 Solution.

Ex3.2.29 Solution.



Ex3.2.30 Solution.

Ex3.2.31 Solution.

Ex3.2.32 Solution.

Ex3.2.33 Solution.

3 Computational problems

We now seek to reinforce the theoretical concepts and small computations by a more realistic application
using music notation. For this part use the score associated with your section and this linked table of
frequencies. The intent of this part of the homework is to invite you to think carefully about how theoretical
concepts map to a particular application.

In class we use Mathematica to demonstrate construction of vectors of sound pressure since it allows for
playback and has prede�ned note frequencies. Octave does not have all these features, but it is simple to
construct the notes within the �rst measure of Ode to Joy .

De�ne the frequencies for the �rst four notes E4,F4,G4

octave> freqE4=329.63; freqF4=349.23; freqG4=392.00;

octave>

De�ne a sampling rate, a time duration for a measure, and a vector of time values that corresponds to a
full measure
octave> s=0.0001; T=0.1; t=(0:s:T-s)'; m=size(t)

m =

1000 1

octave>

In the above we use the Octave language construct start:incr:end, as exempli�ed by

octave> 2:3:15

ans =

2 5 8 11 14

octave>

De�ne windows that correspond to each beat within a measure.

octave> beat=zeros([m,4]);

octave> beat(1:m/4,1)=1; beat(m/4+1:m/2,2)=1; beat(m/2+1:3*m/4,3)=1; beat(3*m/4+1:m,4)=1;

octave>

De�ne vectors that play E4 in beat 1, E4 in beat 2, F4 in beat 3, G4 in beat 4. We use the notation
nNNbB with NN the note and B the beat
octave> nE4b1 = beat(:,1).*sin(2*pi*freqE4*t);

octave> nE4b2 = beat(:,2).*sin(2*pi*freqE4*t);

octave> nF4b3 = beat(:,3).*sin(2*pi*freqF4*t);

octave> nG4b4 = beat(:,4).*sin(2*pi*freqG4*t);

octave>



The �rst measure in Ode to Joy contains a forte symbol. Assume that corresponds to playing the note at
50% more volume
octave> forte=1.5; piano=0.5;

octave>

The �rst measure in Ode to Joy is a linear combination

octave> OtJm01 = forte*nE4b1 + nE4b2 + nF4b3 + nG4b4;

octave>

Additional notes can be de�ned by the same procedure. For the second measure of Ode to Joy we'd need

octave> nG4b1 = beat(:,1).*sin(2*pi*freqG4*t);

octave> nF4b2 = beat(:,2).*sin(2*pi*freqF4*t);

octave> nE4b3 = beat(:,3).*sin(2*pi*freqE4*t);

octave> freqD4=293.66; nD4b4 = beat(:,4).*sin(2*pi*freqD4*t);

octave> OtJm02 = nG4b1 + nF4b2 + nE4b3 + nD4b4;

octave>

We now ask the exact same questions as in the theory part, but with respect to musical notation. For
your homework, use the score associated with your class section.

3.1 Vector spaces

Is measure n within the span of measures 1; 2; :::n¡ 1? Here's a very straightforward example answer for
n=2.
octave> rank([OtJm01 OtJm02])

ans = 2

octave>

Since the rank is 2 the two vectors are linearly independent, and the second measure is not in the span of
measure 1. Provide answers for n=3; 4; 5.

3.2 Linear independence
Are measures (i; j) linearly independent for 16 i; j6 4?

3.3 Null space
Construct a matrix A containing measures 1-6. What is N(A)? Think �rst about the problem, and present
an answer based on your analysis. Then carry out a computation to con�rm.

3.4 Column space
Construct a matrix A containing measures 1-6. What is C(A)? Think �rst about the problem, and present
an answer based on your analysis. Then carry out a computation to con�rm.
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