
MATH547: Linear algebra for applications February 9, 2017

Homework 2

Due date: Feb 17, 2017, 11:55PM.
Bibliography: Course lecture notes Lessons 8-11.

Note: Save this file as Homework2Solution.tm in your /home/student/courses/MATH547/homework
directory. Then carry out your work on solving the problems in TeXmacs. Submit your �nal version through
Sakai. If you've understood the theoretical concepts reviewed in the Background section and lecture notes,
each problem should require about 30 minutes to complete, hence the entire homework can be completed
within 4 hours.

1 Background
1.1 Objectives, basic concepts

In Homework 2 you apply the Fundamental Theorem of Linear Algebra, and the Gram-Schmidt procedure
to solve the problem

min
x2Rn

kb¡Axk (1)

for A2Rm�n; b 2Rm, and 2-norm kk:Rm!R+, kyk2= yTy. If the solution to (1) leads to kb¡A𝓍k=0,
then x is a solution of the linear system Ax= b, often denoted as x=A¡1b, where A¡1 is the inverse of A.
If the solution to (1) is such that kb¡Axk> 0, then x is a least-squares solution, or a generalized solution of
the linear system, denoted as x=A+b, where A+ is the pseudoinverse of A. Least-squares solutions appear
in many contexts, and in this homework we study data �tting as an example.

Least-squares solutions are found through projection onto the approximation space C(A). The projection
is found by orthonormalization of A, through the Gram-Schmidt algorithm that furnishes a factorization
of A = QR. The projection operator is subsequently expressed as P = QQT , and the least-squares best
approximation is given by the solution of the system Rx=QTb (Figure 1).

C(A)

Ax=QRx=Pb=QQTb)Rx=QTb

b

Figure 1. Projection solution of least squares problem

2 Theory problems
2.1 Orthogonal projection
Solve exercises 5.1.27-28. from the textbook, p.217. Solution to exercise 5.1.26 is presented as an example.
Complete the rest.

Ex5.1.26 Solution. Place the vectors de�ning the matrix in matrix A

A=( a1 a2 )=

0@ 2 3
3 ¡6
6 2

1A:



Apply Gram-Schmidt to construct an orthonormal basis set for C(A)

q1=
1
ka1k

a1=
1
7

0@ 2
3
6

1A;
v2=a2¡ (q1Ta2)q1=

0@ 3
¡6
2

1A¡ 0 � q1=
0@ 3
¡6
2

1A;
q2=

1
ka2k

a2=
1
7

0@ 3
¡6
2

1A:
The projector is P =QQT with Q=( q1 q2 )

Q=
1
7

0@ 2 3
3 ¡6
6 2

1A)P =
1
49

0@ 2 3
3 ¡6
6 2

1A� 2 3 6
3 ¡6 2

�
=

1
49

0@ 13 ¡12 18
¡12 45 6
18 6 40

1A:
Compute the projection of b onto C(A)

projC(A)b=Pb=

0@ 19
39
64

1A:
After carrying out the procedure by hand, check the result of the calculation in Octave

octave> A=[2 3; 3 -6; 6 2]; [Q,R]=qr(A,'0'); format rat; Q

Q =

-2/7 3/7
-3/7 -6/7
-6/7 2/7

octave> P=Q*Q'

P =

13/49 -12/49 18/49
-12/49 45/49 6/49
18/49 6/49 40/49

octave> b=[49; 49; 49]; P*b

ans =

19
39
64

octave>



Ex5.1.27 Solution.

Ex5.1.28 Solution.

2.2 Working with transposes
Products involving a matrix and its transpose arise very often, and succintly express groupoings of scalar
products. Solve exercises 5.3.22-5.3.26 to gain facility in working with transposes. Solution to 5.3.21 is pre-
sented as an example

Ex5.3.21 Solution. Denote M =ATA, and compute MT =(ATA)T =ATA, hence M =MT .

Ex5.3.22 Solution.

Ex5.3.23 Solution.

Ex5.3.24 Solution.

Ex5.3.25 Solution.

Ex5.3.26 Solution.

2.3 Pseudoinverse matrix
The following exercises introduce the basic properties of pseudoinverses

Ex5.4.8 Solution.

Ex5.4.11 Solution.

2.4 Data �tting

Solve exercises 5.4.31-5.4.34. Solution to 5.4.30 is presented as an example.

Ex5.4.30 Solution. State the problem in matrix form as

min
c2R2

kAc¡ bk;A=

0@ 1 0
1 0
1 1

1A; b=
0@ 0

1
1

1A; c=�
c0
c1

�
Compute the QR factorization of A, and the best �t coe�cients are the solution of Rc=QT b

octave> A=[1 0; 1 0; 1 1]; format rat; [Q,R]=qr(A,'0')

Q =

-780/1351 -881/2158
-780/1351 -881/2158
-780/1351 3920/4801

R =

-1351/780 -780/1351
0 3920/4801



octave> b=[0; 1; 1]; c=R\(Q'*b)

c =

1/2
1/2

octave>

The linear best �t is f(t)= 1

2
+

1

2
t. Sketch the solution

t

Figure 2.

Ex5.4.31 Solution.

Ex5.4.32 Solution.

Ex5.4.33 Solution.

Ex5.4.34 Solution.

3 Computational problems

We reinforce the theoretical concepts on least squares procedures by consideration of data from electroen-
cephalograms (EEGs). Consult the EEG.tm tutorial.

octave> load /home/student/courses/MATH547/lessons/eeg/eeg;

octave> data=EEG.data'; [md nd]=size(data)

md = 30504



nd = 32

octave> pdata=data./max(data)+meshgrid(0:nd-1,0:md-1);

octave> hold on;
for j=1:nd

plot(pdata(:,j));
end;
hold off;

octave> cd /home/student/courses/MATH547/homework; print -mono -deps eeg.eps;

octave>

Divide the overall time recording into nt=30 segments of length m=1000 fron ns=32 sensors.

octave> A=reshape(data(1:30000,1:32),1000,30,32); [m nt ns]=size(A)

m = 1000
nt = 30
ns = 32

octave>

3.1 Orthogonal projection

Ask the question: are any of the sensors redundant? To answer the question, choose a time slice i, and
consider the projection of each sensor j, s=A(:,i,j) onto the space spanned by all the others. Form a matrix
of all sensors except sensor j by �rst copying all the signals into a new matrix B=A(:,i,:), and then deleting
column j through B(:,i,j)=[]. Here's a simple example of the syntax:

octave> D=[1 2 3; 4 5 6; 7 8 9]

D =

1 2 3
4 5 6
7 8 9

octave> D(:,2)=[]

D =

1 3
4 6
7 9

octave>

Compute the projection through the same procedure as in the theory question 1

QR=B ;P =QQT ;projB sj=Psj ;

and then compute the ratio of the norm of the projection to that of the original sensor signal

fj=
kPsjk
ksjk

; for j=1; :::; 32:

Are any of the sensors redundant? Quantitatively state your criterion for determining whether a sensor is
redundant.



3.2 Fourier analysis
Carry out a practical example of the procedure outlined in Exercise 5.4.35. For some time slice, �t a sum of
trigonometric functions to the available sensor data

sj(t)=� fj(t)= a0
(j)+

X
k=1

16 �
ak
(j) cos

�
2�
m
kt

�
+ bk

(j) sin
�
2�
m
kt

��
; for j=1; :::; 32:

Use the same procedure as in theory question 4. Choose times t=0:m-1. The quantity pk
(j)=

�
ak
(j)�2+�

bk
(j)�2q

is the power of frequency k in the signal. Present a table of pk
(j). Which frequency is dominant in each sensor?

Do all sensors show the same dominant frequency, i.e., are waves in di�erent regions of the brain synchronous?

Note: Both questions in this section are direct applications of the procedures from theory questions 1 and
4. Be sure you understood the theory completely if you �nd the applications di�cult.
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