
MATH547: Linear algebra for applications April 7, 2017

Homework 6

Due date: April 17, 2017, 11:55PM.
Bibliography: Course lecture notes Lessons 23-26.

Note: Save this file as Homework6Solution.tm in your /home/student/courses/MATH547/homework
directory. Then carry out your work on solving the problems in TeXmacs. Submit your �nal version through
Sakai. If you've understood the theoretical concepts reviewed in the Background section and lecture notes,
each problem should require about 20 minutes to complete, hence the entire homework can be completed
within 3 hours.

1 Background
This assignment investigates the multiple uses of the singular value decomposition of a matrix A 2Rm�m,
A = U�V T , with , U 2 Rm�m, V 2 Rn�n; � 2 R+

m�n, U ; V orthogonal matrices UUT = UTU = Im,
VV T = V TV = In, � a diagonal matrix. If r = rank(A), it is often the case that r � m, and it is more
economical to work with the reduced SVD de�ned as A= Û � V̂ T , with Û 2Rm�r, �2R+

r�r, V̂ 2Rn�r.

2 Theory problems

2.1 Symmetric matrices
The SVD of A 2 Rm�n is constructed from eigenproblems of the normal matrices AAT 2 Rm�m and
ATA2Rn�n. It is useful to become familiar with properties of symmetric matrices to understand the SVD.

Ex8.1.16 Solution.

Ex8.1.24 Solution.

2.2 Geometry of the SVD for 2� 2 matrices

Ex8.3.1 Solution.

Ex8.3.2 Solution.

Ex8.3.3 Solution.

Ex8.3.4 Solution.

2.3 SVD solution of least squares problems
Both the QR and the SVD decompositions can be used to solve the least squares problem: given A2Rm�n,
b2Rm �nd x2Rn the minimizes the norm of the di�erence between Ax and b

min
x2Rn

kAx¡ bk:
QR solution.

1. Compute decomposition QR=A

2. The desired best approximation of b is the projection onto C(A), Ax=Pb with P =QQT , (QR)x=
QQT b, hence x is found as the solution of the system Rx=QTb

SVD solution.
1. Compute decomposition U�V T =A



2. The projector onto C(A) is P =UUT , and Ax=Pb, leads to U�V Tx=UUTb. Introduce notation
y=V Tx. Solve system �y=UT b

3. Solution is x=Vy

Ex8.3.17 Solution.

Ex8.3.18 Solution.

2.4 Properties of the SVD

Ex8.3.32 Solution.

Ex8.3.33 Solution.

Ex8.2.34 Solution.

3 Computational problems
The previous assignment and this one illustrate the applications of eigenvalues and the singular value decom-
position in the face recognition problem. The following instructions load a matrix A 2 Rm�n, containing
n = 99 columns, where adding the average a 2Rm to columns of A gives an image with m = 214= 16384
pixels. Also loaded are matrices R;S 2Rn�p of n= 99 coe�cients of linear combinations of columns of A to
give p= 2000 face images.

octave> cd /home/student/courses/MATH547/homework/

octave> load ../lessons/mitfaces/faces.mat

octave> who

Variables in the current scope:

A R S a ans dispans prompt r

octave> [size(A) size(a) size(R) size(S)]

ans =

16384 99 16384 1 99 2000 99 2000

octave> [m,n]=size(A); [n,p]=size(R);

octave> [m n p]

ans =

16384 99 2000

octave> norm(a)

ans = 7063.6

octave>

A vector of length m, say the average face a, is displayed through the instructions
octave> imagesc(flip(reshape(a,128,128)',1)); colormap(gray(256)); print -dpng aface.png



octave>

The reduced SVD of A is computed as

octave> [U,S,V]=svd(A,'0');

The columns of Û represent the deviations of the faces within A from the average face a, ordered such
that u1 is the most important deviation, u2 the next most important, and so on. Here are the changes of the
verage face by displacement along the �rst singular vector by distances 10¡ku1 for k=3; 2; 1.

octave> D=norm(a)*U(:,1)*10.^(-3:-1); F=a*[1 1 1]+D;

octave> imagesc(flip(reshape(F(:,1),128,128)',1)); colormap(gray(256)); print -dpng
svdfm3.png

octave> imagesc(flip(reshape(F(:,2),128,128)',1)); colormap(gray(256)); print -dpng
svdfm2.png

octave> imagesc(flip(reshape(F(:,3),128,128)',1)); colormap(gray(256)); print -dpng
svdfm1.png

octave>

Figure 1. Changes in the average face along the dominant singlar vector

Consider now the problem of facial recognition or classi�cation. Consider some face f 2Rm. The compo-
nents of f are given in the basis I, f =If . The standard basis I is however ine�cient in this context (as in
many others!). It is better to transform to coordinates in the basis U by solving the problem Ux= If . The
coordinates of the face in this new basis are components of x=UTf . Since the vectors within U are ordered,
a very good approximation is found by f~ =U~ x~, with U~ 2Rm�s, x~ 2Rs, taking the �rst s columns of U ,
with s�m. This forms the basis of facial recognition. The �rst s coordinates of the face f in the basis U
are a compact representation, typically with s=O(10), many fewer components thn m= 16384.

Choose some face f from within the database.
1. Compute the reduced SVDs of A=U�V T , M =U1�1V1

T from Homework 5.
2. Compute the coordinates x; y of the face on the bases U ;U1 respectively.
3. How many components of x; y are required to give an approximation of the face to 99% certainty?
4. Is the chosen face f within those chosen in the construction of A;M .

The same note as in Homework 5 applies here also: the above questions can be answered using very few lines
of Octave code, no more that 5 lines per question. The main e�ort is properly conceptualizing the linear
algebra operations, and thinking in terms of vectors and matrix operations. Pay particular attention to the
dimension of the result from every matrix multiplication.
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