
MATH547: Linear algebra for applications February 17, 2017

Homework 3

Due date: Feb 24, 2017, 11:55PM.

Bibliography: Course lecture notes Lessons 11-15. Textbook section 5.5

Note: Save this file as Homework3Solution.tm in your /home/student/courses/MATH547/homework
directory. Then carry out your work on solving the problems in TeXmacs. Submit your �nal version through
Sakai. If you've understood the theoretical concepts reviewed in the Background section and lecture notes,
each problem should require about 30 minutes to complete, hence the entire homework can be completed
within 4 hours.

1 Background

1.1 Objectives, basic concepts

Up to this point in the course, linear algebra concepts have been presented in the context of vectors within
Rm. This assignment highlights the general applicability of linear algebra concepts through problems in inner
product spaces. The inner (or scalar) product is a generalization of the dot product between vectors

2 Theory problems

2.1 Inner product examples

Solve exercises 5.5.3, 4, 14, 19, from textbook, p.260-261. Solution to exercise 5.5.15. is presented as an
example. Complete the rest.

Ex5.5.15 Solution. Check whether inner product properties are satis�ed for x; y ;z 2R2:

¡ symmetry: hx; yi= x1y1+ bx1y2+ cx2y1+ dx2y2,hy;xi= y1x1+ by1x2+ cy2x1+ dy2x2

D= hx; yi¡ hy ;xi= b(x1y2¡ y1x2)+ c(x2y1¡ y2x1)= (b¡ c)x1y2¡ (b¡ c)(y1x2)

D=0 for b= c. Assume c= b henceforth.

¡ distributivity with respect to vector addition:

D= hx+ y ; zi¡ hx; zi¡ hy ;zi;
hx+ y; zi=(x1+ y1)z1+ b(x1+ y1)z2+ b(x2+ y2)z1+ d(x2+ y2)z2;
hx;zi=x1z1+ bx1z2+ bx2z1+ dx2z2;
hy ;zi= y1z1+ by1z2+ by2z1+ dx2y2;

)D=0�

Cancellation of terms shown through color coding.

¡ distributivity with respect to scalar multiplication:

D= ahx; yi¡ hax; yi= a(x1y1+ bx1y2+ bx2y1+ dx2y2)¡ (ax1y1+ bax1y2+ bax2y1+ dax2y2)= 0:�



¡ positive de�niteness: hx;xi=x1
2+2bx1x2+ dx2

2=(x1+ bx2)2+(d¡ b2)x22. Since hx;xi should be positive
for any x=/ 0, deduce that d> b2, in which case hx;xi=0 would imply x2=0, and subsequently x1=0.

Ex5.5.3 Solution.

Ex5.5.4 Solution.

Ex5.5.19 Solution.

Ex5.5.14 Solution.

2.2 Orthonormalization in inner product spaces

Solve exercises 5.5.10, 16

Ex5.5.10 Solution.

Ex5.5.16 Solution.

2.3 Standard operations in inner product spaces

Solve 5.5.24

Ex5.5.24 Solution.

2.4 Fourier coe�cients of the Heaviside function

Solve exercise 5.5.27. The function in this exercise is known as the Heaviside function. The fact that a a
jump can be represented as a sum of smooth trigonometric functions generated enormous debate during the
19th century during the development of Fourier analysis

Ex5.5.27 Solution.

3 Computational problems



We reinforce theoretical concepts by again appealing to music. In Homework 1 you considered the represen-
tation of single notes in a musical score as vectors of pressure values. In this homework, we start from a short
recording and represent the signal f(t) as a linear combination of trigonometric functions (Fourier analysis).

Choose a short (1-5 sec) piece of music. Samples will be provided and discussed in class. Assume the music
repeats after time T , hence f(t)= f(t+T ) (f is periodic with period T )

3.1 Inner product

Compute the inner products
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Recognize that the above are particular cases of the scalar product
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T

Z
0

T

f(t) g(t)dt:

Upon sampling f ; g, obtain the values fj= f(tj), g= g(tj), j=1;2; :::;m, tj= jh, h=T /m. The above scalar
product can then be approximated by the (Darboux) sum
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Introducing vectors for the samples f ; g, obtain

hf ; gi=�
2
m
fTg ;

the familiar dot product, and a good approximation of the inner product can be readily obtained in Octave,
exempli�ed below for the computation of a1; b

octave> m=20000; T=3.; h=T/m; t=(1:m)'*h; f=2*cos(2*pi*t/T)+4*sin(2*pi*2*t/T);

octave> size(f)

ans =

20000 1

octave> a1=2/m*f'*cos(2*pi*t/T)

a1 = 2.0000

octave> b2=2/m*f'*sin(2*pi*2*t/T)

b2 = 4.0000

octave>

Write a loop to compute vectors a;b2Rn, n= 1000. Plot the resulting vector components, (k; ak), (k; bk),

and the norm
�
k; ak

2+ bk
2

p �
.



Solution. Following procedures presented in class, load the mat �le containing the Chopin Waltz in A
minor. Recall that the sound is sampled at f = 44.1 kHz, so if we have n samples the length of the piece is
T = N / f seconds. Construct a vector y containing a clip 0.25 seconds long, starting halfway through the
piece, from t0 to t1. Construct a vector of the sample times t, and plot the clip.

octave> cd /home/student/courses/MATH547

octave> load lessons/musicfiles/ChopinWaltzAminor

octave> who

Variables in the current scope:

Expression1 ans dispans prompt r

octave> N=max(size(Expression1))

N = 4862592

octave> f=44100; i0=N/2+1; i1=floor(N/2+0.25*f); y=Expression1(i0:i1); m=max(size(y))

m = 11025

octave> T=N/f; t0=i0/f; t1=i1/f; [T t0 t1]

ans =

110.263 55.131 55.381

octave> t=(t0:1/f:t1)'-t0; plot(t,y); xlabel('t'); ylabel('y');

octave> print -dpng homework/HW3Fig1.png

octave>

Figure 1. Sound clip from Chopin waltz in A minor. The plot displayed by Octave is captured using the Screenshot
utility.

Operations up to this point just read the data, and were covered in class. We turn now to a concise solution
of what is asked in this problem.

Construct matrices C ;S 2Rm�n containing the trigonometric basis functions

C =( cos(t) cos(2t) ::: cos(nt) );S=( sin(t) sin(2t) ::: sin(nt) )



with t2Rm the column vector of sample times, and compute the requested coe�cients

a=
2
m
yTC ; b=

2
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yTS ;

and compute ck= ak
2+ bk

2
p

.
The Octave operations just require understanding of matrix multiplication. Four lines solves the problem

octave> n=1000; C=cos(2*pi*t*(1:n)); S=sin(2*pi*t*(1:n));

octave> a=(2/m)*y'*C; b=(2/m)*y'*S; c=sqrt(a.^2+b.^2);

octave> plot(1:n,a,'.r',1:n,b,'.b',1:n,c,'.k'); xlabel('k'); ylabel('ak,bk,ck');

octave> print -dpng HW3Fig2.png

octave>

Figure 2. Fourier coe�cients. The dominant notes seem to be at n=� 440 Hz and n=� 820Hz

3.2 Filtering

A very common operation is �ltering, or elimination of some of the Fourier components of a signal. In
linear algebra terms, this is an operation we've already encountered: it's a projection on a subset of the Fourier
basis set f1; cos(2�t/T ); sin(2�t/T ); :::; cos(2�kt/T ); sin(2�kt/T ); ::::g. This is the operation carried out
by a sound equalizer. Choose some range of the signal you want to eliminate. Determine the appropriate
projection matrix in Octave, and then reconstruct the signal formed from the �ltered components by summing
the resulting, �ltered trigonometric series. The objectives are purposely stated without specifying all formulas;
at this stage you should be able to translate the above into an algorithm. Keep in mind that the solution is
very concise, no more than 5-10 lines of Octave code, so the important aspect is to carefully consider each
operation needed to complete this task.

Solution. Suppose we keep frequencies from n1 = 100 to n2 = 200. Construct the matrix, �nd QR
factorization and the projector P =QQT

octave> n1=100; n2=200; A=[C(:,n1:n2) S(:,n1:n2)];

octave> [Q,R]=qr(A,'0');

octave> z=Q*(Q'*y);

octave> plot(t,y,'k',t,z,'r'); xlabel('t'); ylabel('y, z');

octave> print -dpng HW3Fig3.png



Figure 3. Original signal (black), and �ltered signal (red) (frequencies 100 to 200). Notice that the �ltered signal follows
the overall pattern, but does not have higher frequencies.
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