MATH547: LINEAR ALGEBRA FOR APPLICATIONS September 15, 2015
HOMEWORK 2

Due date: September 23, 2015, 11:55PM. Since multiple submissions are allowed in Sakai, submit after
completing some part of the homework to avoid last minute time crunch, and/or computer failure problems.

Bibliography: Course lecture notes Lessons 9-12. Textbook pp. 45-54 from Systems chapter, pp. 148—
160 from Vectors chapter, pp. 193-204 from Matrices chapter.

Save this file as Homework2Solution.tm in your MATHS5/7/homework directory before starting to work on
the solution.

1 and 2. (2 course points) Refer to the systems in exercises C21-C28 on page 55. For each system use
Octave to determine the rank of the system matrix, and the dimension of the null space and left null space.
Then consider the right hand side vector and state whether the system admits no solution, an unique solution
or an infinity of solutions. Verify these conclusions by investigation of the reduced row echelon form of the
augmented matrix.

(C21 example solution, 0.25 course points awarded for reading). In this exercise we move away from tedious
hand computation of row echelon forms or bases for the matrix fundamental subspaces. These tasks are carried
out by the computer. We concentrate on understanding the relationships between the four fundamental matrix
subspaces, and where the right hand side vector is placed, and use the capability of TeXmacs to intersperse
comments and calculations (Note: if you carry out calculations outside of TeXmacs, you must copy and paste
results to obtain a single document answer for this exercise).

We have A € R***, 3 equations, 4 unkowns, domain is R* with dimension n = 4, codomain is R? with
dimension m=3

octave> A=[1 4 3 -1; 1 -1 12; 416 5]; b=[6 6 9]’; r=rank(A); disp(r); format short;
2
octave>

System has rank r =2, dimension of null space is n — r =2, dimension of left null space is m —r=1. If
b is in the left null space, b € N(AT), the system has no solution. If b is in the column space, b € C(A) the
system has an infinity of solutions. Find an orthonormal basis for the column space, C = (¢; ¢3 )

octave> C=orth(A); disp(C);
0.30703 -0.90268

0.20728 0.37263
0.92885 0.21522

octave>
octave>
Subtract from b its components along the null space basis vector r=b — (b’e;)e; — (blez)es
octave> r=b-(b’*C(:,1))*C(:,1)-(b’>*C(:,2))*C(:,1); disp(r);
1.6847

3.7619
-1.0297

octave>

If the remainder vector 7 is null, then b€ C'(A), and the system would have an infinite number of solutions.
In this case 7 # 0, hence the system has no solutions (inconsistent linear system). Verify by computing the
reduced row echelon form of the augmented matrix

octave> disp(rref ([A b]));



1.00000  0.00000 1.40000 1.40000 0.00000
0.00000 1.00000 0.40000 -0.60000  0.00000
0.00000  0.00000  0.00000  0.00000 1.00000

octave>

Indeed the last equation after applying row reduction operations would be 0 =1, a false statement, hence
the system is not consistent. Notice that instead of computing an orthonormal basis for the column space,
we could have computed an orthonormal basis for the left null space.

octave> L=null(A’); disp(L);

0.30151
0.90453
-0.30151

octave>

If b has a non-zero component in the left null space, the system has no solution. Indeed computation of
b’l, gives a non-zero scalar, confirming above conclusions.

octave> disp(b’*L(:,1));
4.2212
octave>
Apply the above procedure to all the remaining systems (C22-C28). You must include text commenting
your results. Just presenting the results of the Octave calculations is not sufficient. A shortened form of the
above discussion that you can use as a template for (C22-C28) is:
Solution template.
AcR>* m=3,n=4
octave> A=[1 4 3 -1; 1 -1 1 2; 416 5]; b=[5 6 9]’; r=rank(A); disp(r);
2
octave>

From above r =rank(A) =2, left null space dimension is m —r = 1, null space dimension is n —r =2. Let
C cR**2, be a matrix of orthonomal basis vectors for the column space of A

octave> C=orth(A);
octave>
Compute what remains of b after subtracting components along ¢y, co, 7 =b — (bley)e; — (bles) ey
octave> r=b-(b’*C(:,1))*C(:,1)-(b’*C(:,2))*C(:,2); disp(norm(r));
4.2212
octave>

The result is not the null vector, hence b is not in the column space, b¢ C(A), and system has no solution.
Verify using reduced row echelon form of the augmented matrix

octave> disp(rref ([A b]));

1.00000  0.00000 1.40000 1.40000 0.00000
0.00000 1.00000 0.40000 -0.60000  0.00000
0.00000  0.00000  0.00000 0.00000 1.00000

octave>

Above is an inconsistent system (0-x,=1 cannot be true).

Remember, what is being verified is your understanding of course concepts, not the capacity to carry out
Octave commands, hence including appropriate comments as above is required. To be clear, if your homework
solution would be just the calculations and a final conclusion, as shown below, no credit would be given at
all, even though the calculations and/or conclusion might be correct.



FExample of answer that is not awarded any credit.

octave> A=[1 4 3 -1; 1 -1 1 2; 416 5]; b=[5 6 9]’; r=rank(A); disp(r);
2

octave> C=orth(A);

octave> r=b-(b’*C(:,1))*C(:,1)-(b’*C(:,2))*C(:,2); disp(norm(r));
4.2212

octave> disp(rref ([A b]));

1.00000  0.00000 1.40000 1.40000 0.00000
0.00000 1.00000 0.40000 -0.60000  0.00000
0.00000  0.00000  0.00000  0.00000 1.00000

octave>

No solution.

This is also how examination questions will be graded: calculations without presentation of motivation of
why a calculation is being carried out, and analysis of results are not awarded any credit.

(C22, 0.25 course points). A €R3>*4 m=3 n=4
octave> A=[1 -2 1 -1; 2 -4 1 1; 1 -2 -2 3]; disp(A); b=[3 2 1]’; r=rank(A); disp(r);
1 -2 1 -1
2 -4 1 1
1 -2 -2 3
3
octave>
From above r =rank(A) = 3, left null space dimension is m — r = 0, null space dimension is n —r = 1.
Since 7 =3, any b € R? is in the column space, be C(A). Since n=4>3=r, the system has a one-parameter
family of solutions, & =x,+ An; where x, is a particular solution of Az =b, and N = (n;) € R**! is a basis
set for the null space. Compute rref(A)
octave> disp(rref ([A b]));

1 -2 0 0 3
0o o 1 0 -2
0o o o 1 -2

octave> null(A)
0.89443

0.44721
0
0

octave> [2; 1; 0; 0]/sqrt(5.)

0.89443
0.44721
0
0
octave> C=orth(A) ;
octave> C(:,1)’*C(:,2)
—1.6653e — 16

octave>



Obtain particular solution x,, null space basis vector n,
() ()
0 1
-2

)

(C23, 0.25 course points). A€ R3>*4 m=3 n=4
octave> A=[1 -21 -1; 1 11 -1; 1 0 1 -1]; disp(A); b=[3 1 2]’; r=rank(A); disp(r);
1 -2 1 -1
1 1 1 -1
1 0 1 -1
2

octave>

From above r = rank(A) = 2, left null space dimension is m — r = 1, null space dimension is n — r = 2.
Compute basis C' = (¢; ¢;) for C(A) and check if b is in column space by computing 7 =b — (b’c;)c; — (b'es) ey
octave> C=orth(A); disp(C);

0.74751 -0.60811
0.41007  0.73900
0.52265  0.28997

octave> r=b-(b’*C(:,1))*C(:,1)-(b’*C(:,2))*C(:,2); disp(norm(r));

0.26726
octave>

The remainder is not in the column space. System has no solution. Use rref to verify
octave> disp(rref ([A b]));

1 0 1 -1 0
0 1 0 0 0
0 o0 0 O 1

octave>

Indeed, last equation is inconsistent.

(C24, 0.25 course points). A €R¥>** m=3,n=4
octave> A=[1 -21 -1; 111 -1; 1 01 -1]; disp(A); b=[2 2 2]’; r=rank(A); disp(r);
1 -2 1 -1
1 1 1 -1
1 0 1 -1
2

octave>

From above r =rank(A) = 2, left null space dimension is m — r = 1, null space dimension is n — r = 2.
Compute basis C = (¢ ¢,) for C(A) and check if b is in column space by computing 7 =b — (b’c;)c; — (b'es)cy
octave> C=orth(A); disp(C);

0.74751 -0.60811
0.41007  0.73900
0.52255  0.28997

octave> r=b-(b’*C(:,1))*C(:,1)-(b’*C(:,2))*C(:,2); disp(norm(r));
1.8150e-15

octave>



The remainder is null, hence b € C(A). System has a two-parameter family of solutions  =x,+ A1, +
A\omip, with null space basis N = (n;ny) € R?*2. Use rref to verify

octave> disp(rref ([A b]));

i1 0o 1 -1 2
o 1 0 0 O
0o o0 o 0 O

octave> null(A)
( —0.8165 0 \
0 0
0.40825 0.70711
—0.40825 0.70711
octave> xp=[2;0;0;0]; z1=[-1;0;1;0]; z2=[1;0;0;1];
octave> Axxp-b

0
0
0

octave> A*(xp+2%z1+3%z2)-b

0
0
0

octave>

Obtain

CUp:

S
N
|
_ O O =

(C25, 0.25 course points). A € RY™3 m=4,n=3
octave> A=[1 2 3; 2 -1 1; 31 1; 01 2]; disp(A); b=[1 2 4 6]°; r=rank(A); disp(r);

1 2 3
2 -1 1
3 1 1
o 1 2
3
octave>

From above r = rank(A) = 3, left null space dimension is m — r = 1, null space dimension is n — r = 0.
Compute basis C = (c; ¢; ¢3) for C(A) and check if b is in column space by computing r = b — (blc))e; —
(bTeg)ear =b — (bley)e; — (b'es)es
octave> C=orth(A); disp(C);

0.6893281  0.4496047 -0.0039686
0.2903676 -0.5823131 -0.7522841
0.5589403 -0.5255652  0.5871119
0.3579095  0.4272567 -0.2989188

octave> r=b-(b’*C(:,1))*C(:,1)-(b’*C(:,2))*C(:,2)-(b>*C(:,3))*C(:,3); disp(norm(r));
4.9058

octave>



The remainder is not in the column space. System has no solution. Use rref to verify
octave> disp(rref ([A bl));
1 0 0 0
0 1
0 0
0 0

octave>

0 0
1 0
0 1
Indeed, last equation is inconsistent.

(C26, 0.25 course points). A€R™3 m=4n=3
octave> A=[1 2 3; 2 -1 1; 31 1; 05 2]; disp(A); b=[1 2 4 1]’; r=rank(A); disp(r);

1 2 3
2 -1 1
3 1 1
0 &5 2
3
octave>

From above r = rank(A) = 3, left null space dimension is m — r = 1, null space dimension is n — r = 0.
Compute basis C = (¢; ¢z ¢3) for C(A) and check if b is in column space by computing » =b — (b’ei)e; —
(bley)eor — (bles)es
octave> C=orth(A); disp(C);

0.532010 -0.208514 -0.728443
0.030972 -0.625543 -0.190546
0.315205 -0.625543 0.605379
0.785272 0.417029 0.258028
octave> r=b-(b’*C(:,1))*C(:,1)-(b’*C(:,2))*C(:,2)-(b>*C(:,3))*C(:,3); disp(norm(r));
2.8657e-15
octave>

The remainder is null, hence b€ C'(A). Since the null space is of dimension zero, the system has a unique
solution. Use rref to verify
octave> disp(rref ([A bl));
1.00000 0.00000 0.00000 1.33333
0.00000 1.00000 0.00000 0.33333
0.00000 0.00000 1.00000 -0.33333
0.00000 0.00000 0.00000 0.00000

octave>

The solution is
4/3
1/3
-1/3

(C27, 0.25 course points). A€ R™3 m=4n=3
octave> A=[1 2 3; 2 -1 1; 1 -8 -7; 0 1 1]; disp(A); b=[0 2 1 0]’; r=rank(A); disp(r);

xr

1 2 3
2 -1 1
1 -8 -7
0 1 1



octave>
From above r =rank(A) = 2, left null space dimension is m — r = 2, null space dimension is n —r = 1.
Compute basis C = (¢; ¢y ) for C(A) and check if b is in column space by computing 7 = b — (b’e;)c; —
(bley)eor
octave> C=orth(A); disp(C);
-0.304226 0.511252
0.015786  0.844532

0.944251 0.155307
-0.124848 0.035595

octave> r=b-(b’*C(:,1))*C(:,1)-(b’*C(:,2))*C(:,2); disp(norm(r));
0.80378
octave>

The result is not the null vector, hence b is not in the column space, b¢ C(A), and system has no solution.
Verify using reduced row echelon form of the augmented matrix

octave> disp(rref ([A b]));

1 0 1 O
0 1
0 O
0 O

octave>

1 0
0 1
0 O
Above is an inconsistent system (0-x3=1 cannot be true).

(C28, 0.25 course points). A€R¥*3 m=4,n=3
octave> A=[1 2 3; 2 -1 1; 1 -8 -7; 0 1 1]; disp(A); b=[1 2 1 0]’; r=rank(A); disp(r);

1 2 3
2 -1 1
1 -8 -7
0 1 1
2
octave>

From above r =rank(A) = 2, left null space dimension is m — r = 2, null space dimension is n — r = 1.
Compute basis C = (¢; ¢y ) for C(A) and check if b is in column space by computing 7 = b — (b’e;)c; —
(bley)eor
octave> C=orth(A); disp(C);

-0.304226 0.511252
0.015786 0.844532
0.944251 0.155307
-0.124848  0.035595
octave> r=b-(b’*C(:,1))*C(:,1)-(b’*C(:,2))*C(:,2); disp(norm(r));
9.9959¢e-16
octave>

The remainder is null, hence b€ C(A). System has one-parameter family of solutions  =x,+ A\in;, with
null space basis N = (n;) €R**!. Use rref to verify
octave> disp(rref ([A b]));

1 0 1 1
0 1 1 -0
0o 0 0 ©O



0 o0 0 O

octave>
Obtain
1 —1
Typ= 0 , N1 = -1 >
0 1

3. (1 course point) Textbook Reading Questions 1, 2 on page 204
Solution. Apply Gauss-Jordan algorithm to compute inverse. Q1: (all steps shown, hand computation)

D I e ) B e V) BT e R I
(613 5)
a=(37)

Q2: (all steps shown, but with computations done in octave)
octave> A=[2 3 1; 1 -2 -3; -2 4 6]; AI=[A eye(3)]; format rat; disp(AI);

2 3 1 1 0 0
1 -2 -3 0 1 0
-2 4 6 0 0 1
octave> AI(1,:)=AI(1,:)/2; disp(AI);
1 3/2 1/2 1/2 0 0
1 -2 -3 0 1 0
-2 4 6 0 0 1
octave> AI(2,:)=AI(2,:)+(-1)*AI(1,:); AI(3,:)=AI(3,:)+2%xAI(1,:); disp(AI);
1 3/2 1/2 1/2 0 0
0 -7/2 -7/2 -1/2 1 0
0 7 7 1 0 1
octave> AI(2,:)=(-2/7)*AI(2,:); disp(AI);
1 3/2 1/2 1/2 0 0
-0 1 1 1/7 -2/7 -0
0 7 7 1 0 1
octave> AI(3,:)=AI(3,:)+(-7)*AI(2,:); disp(AI);
1 3/2 1/2 1/2 0 0
-0 1 1 1/7 -2/7 -0
0 0 0 0 2 1

Matrix is singular, and does not have an inverse.

4. (1 course point) Compute the inverse of A € R™*™ for matrices in exercises C16-C19, p. 205 by row
echelon reduction of the full augmented form ( A I ), with I € R"™*™ the identity matrix. Show intermediate
steps. Verify your result by using the Octave inv(A) command.

Solution. C16. Perform row reduction and compare final result to inv(A)

octave> A=[1 0 1; 1 1 1; 2 -1 1]; AI=[A eye(3)]; disp(AI);

1 0 1 1 0 0
1 1 1 0 1 0
2 -1 1 0 0 1



octave> AI(2,:) AT(2,:) - AI(1,:); AI(3,:) = AI(3,:) - 2%AI(1,:); disp(AI);

1 0 1 1 0 0
0 1 0 -1 1 0
0 -1 -1 -2 0 1
octave> AI(3,:) = AI(3,:) + AI(2,:); disp(AD);
1 0 1 1 0 0
0 1 0 -1 1
0 0 -1 -3 1 1
octave> AI(3,:) = -AI(3,:); disp(AI);
1 0 1 1 0 0
0 1 0 -1 1 0
-0 -0 1 3 -1 -1
octave> AI(1,:) = AI(1,:) - AI(3,:); disp(AD);
1 0 0 -2 1 1
0 1 0 -1 1 0
-0 -0 1 3 -1 -1
octave> disp(inv(A));
-2 1 1
-1 1 0
3 -1 -1

octave>
C17. Perform row reduction and compare final result to inv(A)
octave> A=[2 -1 1; 1 2 1; 3 1 2]; AI=[A eye(3)]; disp(AD);

2 -1 1 1 0 0

1 2 1 0 1 0

3 1 2 0 0 1
octave> AI(1,:)=(1/2)*AI(1,:); disp(AI);

1 -1/2 1/2 1/2 0 0

1 2 1 0 1 0

3 1 2 0 0 1

octave>

octave> AI(2,:) = AI(2,:) - AI(1,:); AI(3,:) = AI(3,:) - 3%AI(1,:); disp(AI);

1 -1/2 1/2 1/2 0 0

0 5/2 1/2 -1/2 1 0

0 5/2 1/2 -3/2 0 1
octave> AI(2,:)=2/5%AI(2,:); disp(AI);

1 -1/2 1/2 1/2 0 0

0 1 1/5 -1/5 2/5 0

0 5/2 1/2 -3/2 0 1

octave>

octave> AI(3,:) = AI(3,:) - 5/2%AI(2,:); disp(AI);
1 -1/2 1/2 1/2 0 0
0 1 1/5 -1/5 2/5
0 0 0 -1 -1 1



octave>

Matrix is singular, and has no inverse.
C18. Perform row reduction and compare final result to inv(A)

octave> A=[1 3 1; 1 2 1; 2 2 1]; AI=[A eye(3)]; disp(AI);

octave>

octave>

octave>

octave>

octave>

octave>

octave>

1 3 1 1 0

1 2 1 0 1

2 2 1 0 0
AT(2,:)=ATI(2,:)-AI(1,:); AI(3,:)=AI(3,:)-2%xAI(1,:)

1 3 1 1 0

0 -1 0 -1 !

0 -4 -1 -2 0
AI(2,:)=-AI(2,:); disp(AI);

1 3 1 1

-0 1 -0 1

0 -4 -1 -2
AT(3,:)=AI(3,:)+4*AI(2,:); disp(AI);

1 3 1 1

-0 1 -0 1

0 0 -1 2
AI(3,:)=-AI(3,:); disp(AI);

1 3 1 1

-0 1 -0 1

-0 -0 1 -2
AT(1,:)=ATI(1,:)-3%AI(2,:)-AI(3,:); disp(AI);

1 0 0 0

-0 1 -0 1

-0 -0 1 -2
disp(inv(A));

0 -1 1

1 -1 0

-2 4 -1

C19. Perform row reduction and compare final result to inv(A)
octave> A=[1 3 1; 0 2 1; 2 2 1]; AI=[A eye(3)]; disp(AI);

octave>

octave>

octave>

1 3 1 1

0 2 1 0

2 2 1 0
AI(3,:)=AI(3,:)-2%AI(1,:); disp(AI);

1 3 1 1

0 2 1

0 -4 -1 -2
AI(2,:)=(1/2)*AI(2,:); disp(AI);

1 3 1 1

0 1 1/2

0 -4 -1 -2

AT(3,:)=AI(3,:)+4*AI(2,:); disp(AI);

O = O

O = O

b

0
0
1

disp(AI);
0

o



1 3 1 1 0 0

0 1 1/2 0 1/2 0

0 0 1 -2 2 1
octave> AI(2,:)=AI(2,:)-1/2%AI(3,:); disp(AI);

1 3 1 1 0 0

0 1 0 1 -1/2 -1/2

0 0 1 -2 2 1
octave> AI(1,:)=AI(1,:)-3%AI(2,:)-AI(3,:); disp(AI);

1 0 0 0 -1/2 1/2

0 1 0 1 -1/2 -1/2

0 0 1 -2 2 1
octave> disp(inv(A));

0 -1/2 1/2

1 -1/2 -1/2

-2 2 1

octave>

5. (4 course points) Apply your knowledge and understanding of matrix subspaces to the face recognition
problem. This will be our first true computer application, and we’ll use a few more features of Octave.

Preparation. First, let’s learn how to define functions in Octave. Here’s a simple function that returns the
double of the input value. When writing functions in an Octave session within TeXmacs, use Shift+Enter to
get a new line, and use Enter to complete the definition.

octave> function d=dbl(x)
d=2x*x;
endfunction;
octave>
Test that the function works
octave> dbl(2)
4

octave>

Next, let’s learn how to work with strings. Strings are enclosed in quotes, and can be assigned as values
to variables. You can join multiple strings with the strcat function.

octave> astr="a"; bstr="b"; cstr="c";
octave> strcat("a","b","c")
abc
octave> strcat(astr,bstr,cstr)
abc
octave>
You convert numbers to strings using the num2str function.
octave> x=2.2; strcat("The answer is x=",num2str(x))
The answer is x=2.2
octave>
You can control the format of how a number is converted to a string using C-language formatting directives.
octave> num2str(2,"%2.24")
02

octave>



Using the above, let us define a function to read a face from the yalefaces database

octave> function img=readface(n,type)
fhead = "/home/student/courses/MATH547/lessons/yalefaces/subject";
fnr = strcat(num2str(n,"%2.24"),".");
fname = strcat(fhead,fnr,type);
[img,map,alpha] = imread(fname);
endfunction;
octave>

Parse the above to understand how things work. A string is formed for the file name using a header, the
number of the image we want, and the type of the image. The image is read from the file and returned. We
can find out its size and set the number of height, width pixels (h,w). Look at a portion of the matrix to see
that an image is simply an array of gray-value intensities with the value 0 denoting black and the value 255
denoting white. We define a function to reformat an image as a vector with entries between 0 and 1.

octave> fOln=readface(l,"normal");

octave> [h,w]=size(f01n);

octave> disp([h w]);
243 320

octave> f01n(97:103,97:103)
255 2b5 186 83 135 153 79
255 248 111 149 192 104 62
255 224 164 251 223 102 46
255 235 202 255 203 93 45
255 255 265 246 136 58 50

265 2565 255 231 123 52 51
255 265 265 175 79 50 B8

octave> function vec=img2vec(img)
[h,w]=size(img); m=h*w;
vec=zeros(m,1);
vec=double(reshape (img,m,1))/255.;
endfunction;

octave> v0ln=img2vec(f01n) ;
octave>
Now let us form a matrix of the normal face images A € R™*", with m = hw =320, and n =15 subjects.
First create a matrix of the appropriate size with zero entries everywhere.
octave> m=h*w; n=15; A=zeros(m,n);
octave> rank(A)
0
octave>
Now use a loop to fill each column, with image gray level rescaled to be between 0 and 1.

octave> for j=1:n
fj=readface(j,"normal");
A(:,j) = img2vec(fj);
end;
octave>

At present there is no command from within Octave to embed an image directly into TeXmacs. This has
to done manually by using the menu option Insert->Image->Insert image ... dialogue. Here are the 15 “normal
faces”






Since those are 15 rather different people, we should expect the column vectors of the matrix A to be
linearly independent as confirmed by computing the rank

octave> rank(A)
15

octave>
Let us construct a linear combination of some faces

octave> newf=0.5%A(:,1)+0.5%A(:,3);

octave>
Define a function that saves the vector to an image file on disk

octave> function writeface(f,h,w,name)
i = reshape(f,h,w);
fname = strcat("/home/student/courses/MATH547/homework/" ,name,".png");
imwrite(i,fname);
endfunction;
octave> writeface(newf,h,w,"newface");
octave> format short;

octave>

The image has been written to a the file newface.png within your homework directory. Here it is (Insert-
>Small figure followed by Insert->Image->Insert image ...):

Figure 2. Linear combination of subjectOl and subject03.

Just from the above you notice there are additional issues that arise:

e image alignment



e feature alignment

These are interesting open research problems. For now start investigating practical application of the concepts
learned so far by answering the following.

Questions.

a) Are images from different poses close to the original image? Since two images are vectors u, v, the

smaller the angle
uTv
0= arccos(— )
Jwll vl

between the vectors, the closer they are. Compute the angle between the various poses and the normal images
for at least 5 subjects, present as a table, and comment the result

For example:

octave> hOl=img2vec(readface(l, "happy"));
octave> nOl=img2vec(readface(l,"normal"));
octave> acos(h01’*n01/norm(h01) /norm(n01))

0.15307

octave> poses=["centerlight"; "glasses"; "happy"; "leftlight"; "noglasses"; "normal";
"rightlight"; "sad"; "sleepy"; "surprised"; "wink"];

octave> np=max(size(poses)); disp(np);
11

octave> ns=5; scprod=zeros(np,ns);
for s=5:4+ns
nFace = img2vec(readface(s,"normal"));
for p=1:np
pFace = img2vec(readface(s,poses(p,:)));
scprod(p, s-4)=pFace’*nFace/norm(pFace) /norm(nFace) ;
end
end;

octave> disp(poses);

centerlight
glasses
happy
leftlight
noglasses
normal
rightlight
sad
sleepy
surprised
wink
octave> disp(scprod);
0.98753 0.92578 0.97376 0.97685  0.95932



0.99739 0.94659 0.98007 1.00000 0.94225
0.99754 0.99552 0.97788 0.97654 0.99540
0.91731 0.74995 0.86003 0.84721 0.83625
0.99681 1.00000 1.00000 0.97203 1.00000
1.00000 1.00000 1.00000 1.00000 1.00000
0.85862 0.92884 0.92267 0.90360 0.91918
0.99757 0.98684 0.98477 0.96135 0.98607
0.99776 0.97054 0.99829 0.96625 0.98717
0.99415 0.94757 0.98286 0.94264 0.98755
0.99880 0.98221 0.98319 0.95706 0.97840
octave>

The scalar products are close to one, hence the poses are indeed close to the normal image.

b) Another way to measure closeness is to compute the ratio of the norm of the difference to norm of a
vector (this is known as a relative error) |[u —v||/||v||. Do this for poses, subjects chosen in (a) and compare
results

octave> ns=5; relerr=zeros(np,ns);
for s=5:4+ns
nFace = img2vec(readface(s,"normal"));
for p=1:np
pFace = img2vec(readface(s,poses(p,:)));
relerr(p, s-4)=norm(pFace-nFace)/norm(nFace) ;
end
end;

octave> format short; disp(relerr);

0.15745 0.41111 0.22762 0.21566 0.29218
0.07221 0.32823 0.20040 0.00000 0.33962
0.07004 0.09477 0.21233 0.21683 0.09600
0.39980 0.66663 0.51342 0.53429 0.54873
0.07982 0.00000 0.00000 0.23540 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.57061 0.37995 0.40869 0.44494 0.40316
0.06973 0.16227 0.17551 0.27878 0.16659
0.06689 0.24445 0.05857 0.26022 0.16002
0.10797 0.32476 0.18579 0.33893 0.15768
0.04904 0.18844 0.18463 0.29096 0.20772
octave>

As expected the smaller errors arise from small variations in the image, e.g. “noglasses” for people who do
not ordinarily wear glasses. When lighting conditions change markedly the relative error increases.

c) We don’t expect an arbitrary image to be within the column space of the normal image C(A). But
how close can we get? Recall that if b€ R™ is not in the column space of A, b ¢ C(A), the closest linear
combination is found by solving the least squares problem

AT(b— Az)=0= (ATA)z=ATb= Nz =c



The vector within the column space closest to b is then y = Ax. For each of the poses of a subject solve
the least squares problem and show the resulting image. Example: Execute the following random number
generator to determine the subject you will work with

octave> round(rand*15)
12
octave> b=img2vec (readface (12, "happy"));
octave> N=A’xA; c=A’xDb;
octave> x=N\c;
octave> y=Ax*x;
octave> writeface(y,h,w,"yHappyl2");
octave> strcat("y",poses(1,:),"12")

ycenterlight12

octave>

Figure 3. (Top row): linear combination of normal faces closest to subject12.happy, cent
(Bottom row): leftlight, rightlight, sleepy.



Carry out the calculations, and complete the table in Figure 3 for the other poses.

octave> for p=1:np
b img2vec(readface(s,poses(p,:)));
c = A’xb; x = N\c; y = Ax*x;
writeface(y,h,w,strcat("y",poses(p,:),"12"));
end;

octave>

Results are in Fig. 3. Notice that slight misalignment of subjects and changes in lighting give rise to large
changes in “closest’ linear combination.’

d) In what matrix subspace should the differences b — Ax computed above belong to? Check this
numerically.

The differences should be in the left null space, and AT(b— Ax) should be essentially zero.

octave> for p=1:np

b = img2vec(readface(s,poses(p,:)));
c = A’xb; x = N\c; y = Ax*x;
disp(strcat("For p=",num2str(p)," |[IA?*(b-A*x)||=",num2str (norm(A’*(b-y)))));
end;

For p=1 ||A’*(b-A*x)||=4.3407e-09

For p=2 ||A’*(b-A*x)|]=6.1051e-09

For p=3 ||A’*(b-A*x)||=3.6986e-09

For p=4 ||A’*(b-Axx)||=1.4556e-08

For p=5 ||A’*(b-A*x)||=1.5332e-11

For p=6 ||A’*(b-A*x)||=1.5332e-11

For p=7 ||A’*(b-A*x)||=5.1956e-09

For p=8 ||A’*(b-A*x)||=3.5041e-09

For p=9 ||A’*(b-A*x)||=3.5384e-09

For p=10 ||A’*(b-A*x) ||=3.5292¢-09

For p=11 ||A’*(b-A*x)||=3.2699¢-09

octave>



