Homework 5 solution

Due date: April 1, 2016, 11:55PM.

the arithmetic

Bibliography: Course lecture notes Lessons 21-23. Textbook pp. 395-424, Sections 8.2-8.4.

Typical solution procedures are shown

1. (1 course point) Textbook p.400, Exercise 8.2.1

Solution. (a) Eigenvalue computation by finding roots of characteristic polynomial

$$p(\lambda) = \det(\boldsymbol{A} - \lambda \boldsymbol{I}) = \begin{vmatrix} 1 - \lambda & -2 \\ -2 & 1 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1) = 0 \Rightarrow \lambda_1 = -1, \lambda_2 = 3.$$

Eigenvector computation by finding basis for null spaces of $A - \lambda I$

$$\mathbf{A} - \lambda_1 \mathbf{I} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \sim \begin{pmatrix} 2 & -2 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} 2 \cdot x_{11} - 2 \cdot x_{21} &= 0 \\ 0 \cdot x_{11} + 0 \cdot x_{21} &= 0 \end{cases} \Rightarrow \mathbf{x}_1 = \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \|\mathbf{x}_1\| = 1 \Rightarrow \alpha = \frac{1}{\sqrt{2}}.$$

$$\mathbf{A} - \lambda_2 \mathbf{I} = \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} 2 \cdot x_{12} + 2 \cdot x_{22} &= 0 \\ 0 \cdot x_{12} + 0 \cdot x_{22} &= 0 \end{cases} \Rightarrow \mathbf{x}_2 = \alpha \begin{pmatrix} -1 \\ 1 \end{pmatrix}; \|\mathbf{x}_2\| = 1 \Rightarrow \alpha = \frac{1}{\sqrt{2}}.$$

(b) Once the above operations have been learned and become routine, one can use Octave to carry out

```
octave> A=[1 -2./3.; 1/2. -1/6.]; c=poly(A); disp(c);
      1.00000 -0.83333
                          0.16667
octave> lambda=roots(c); disp(lambda');
                0.33333
      0.50000
octave> X=[ null(A-lambda(1)*eye(2)) null(A-lambda(2)*eye(2)) ]; disp(X);
      0.80000
                0.70711
      0.60000
                0.70711
octave> disp( inv(X)*A*X );
      0.50000
                0.00000
      0.00000
                0.33333
octave>
```

(c) The operations of finding eigenvalues and eigenvectors are frequently encountered, and there exist operations to directly obtain the eigensystem associated with a matrix.

Note, that interpreting the results requires understanding of theoretical concepts. In this case, the matrix has eigenvalue $\lambda = 2$ with algebraic multiplicity $m_{\lambda} = 2$. The geometric multiplicity is $n_{\lambda} = \dim(N(\boldsymbol{A} - \lambda \boldsymbol{I})) = 1$, and the matrix is defective. Notice that Octave gives only one basis vector for the null space, and the rank of the \boldsymbol{X} matrix returned by the eig procedure is equal to one

```
octave> disp(null(A-2*eye(2)));
```

```
0.70711
octave> disp( rank(X) );
2
```

(j) This example is instructive since it shows how identifying a block structure in the matrix can simplify computations. Notice how block submatrices are identified, defined, and used

```
octave> A11=[3 4;4 3]; A12=zeros(2); A21=zeros(2); A22=[1 3;4 5]; octave> A=[A11 A12; A21 A22]; disp(A);

3 4 0 0  
4 3 0 0  
0 0 1 3  
0 0 4 5
```

octave>

octave>

octave>

The eigenvalues could be found as the roots of the characteristic polynomial of the A matrix octave> c=poly(A); r=roots(c); disp(r');

```
7.0000 - 0.0000i 7.0000 - 0.0000i -1.0000 - 0.0000i -1.0000 + 0.0000i octave>
```

In this particular case with $A_{12} = A_{21} = 0$, the characteristic polynomial can be computed as

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}_4) = \begin{vmatrix} \boldsymbol{A}_{11} - \lambda \boldsymbol{I}_2 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{A}_{22} - \lambda \boldsymbol{I}_2 \end{vmatrix} = \det(\boldsymbol{A}_{11} - \lambda \boldsymbol{I}_2) \det(\boldsymbol{A}_{22} - \lambda \boldsymbol{I}_2).$$

Here we explicitly show the dimension of the identity matrix through a subscript.

The same roots are found by working with submatrices. This is typically advantageous since it reduces number of arithmetic operations.

(EC4.a 1 point) Determine the most general conditions on submatrices A, B, C, D such that

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC).$$

(k) In this example, the triangular structure of the matrix can be used to simplify computations. Indeed the eigenvalues are directly read off the diagonal

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 4 - \lambda & 0 & 0 & 0 \\ 1 & 3 - \lambda & 0 & 0 \\ -1 & 1 & 2 - \lambda & 0 \\ 1 & -1 & 1 & 1 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda)(2 - \lambda)(1 - \lambda).$$

2. (1 course point) Textbook p.401, Exercise 8.2.7

(c) Procedures for complex-valued matrices are identical to those for real matrices

$$p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} i - \lambda & 1 \\ 0 & -1 + i - \lambda \end{vmatrix} = (\lambda - i)(\lambda - i + 1) = 0 \Rightarrow \lambda_1 = i, \lambda_2 = i - 1.$$

$$\mathbf{A} - \lambda_1 \mathbf{I} = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} 0 \cdot x_{11} + 1 \cdot x_{21} &= 0 \\ 0 \cdot x_{11} + 0 \cdot x_{21} &= 0 \end{cases} \Rightarrow \mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\mathbf{A} - \lambda_2 \mathbf{I} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} 1 \cdot x_{12} + 1 \cdot x_{22} &= 0 \\ 0 \cdot x_{12} + 0 \cdot x_{22} &= 0 \end{cases} \Rightarrow \mathbf{x}_2 = \alpha \begin{pmatrix} -1 \\ 1 \end{pmatrix}; \|\mathbf{x}_2\| = 1 \Rightarrow \alpha = \frac{1}{\sqrt{2}}.$$

Octave computational procedures work equally well with complex numbers

```
octave> i=sqrt(-1); A=[i 1; 0 -1+i]; c=poly(A); disp(c);
          1 + 0i     1 - 2i     -1 - 1i
octave> r=roots(c); disp(r);
          -1.00000 + 1.00000i
          0.00000 + 1.00000i
octave> [X,L]=eig(A); disp(diag(L));
          0 + 1i
           -1 + 1i
octave> disp(X);
          1.00000     0.70711
           0.00000     -0.70711
```

3. (1 course point) Textbook p.404, Exercises 8.2.19-22

Solution. (19) It is given that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$. (a) Multiply eigenvalue relation by c to obtain $(c\mathbf{A})\mathbf{x} = (c\lambda)\mathbf{x}$.

- (b) Add $d\mathbf{x}$ to both sides to obtain $\mathbf{A}\mathbf{x} + d\mathbf{I}\mathbf{x} = \lambda\mathbf{x} + d\mathbf{x} \Rightarrow (\mathbf{A} + d\mathbf{I}) = (\lambda + d)\mathbf{x}$, hence $\lambda + d$ is an eigenvalue of $\mathbf{A} + d\mathbf{I}$.
 - (c) Combine above.
 - (20) Multiply $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, on the left by \mathbf{A} to obtain $\mathbf{A}^2\mathbf{x} = \lambda \mathbf{A}\mathbf{x} = \lambda(\lambda \mathbf{x}) = \lambda^2 \mathbf{x}$.
- (21) (a) False. The key observation here is that even if two matrices have the same eigenvalue, they generally have different eigenvectors, $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ and $\mathbf{B}\mathbf{y} = \lambda \mathbf{y}$. Counter example

$$\lambda = 0, \mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{A} + \mathbf{B} = \mathbf{I} \text{ has } \lambda_{1,2} = 1.$$

(b) True. Given $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ and $\mathbf{B}\mathbf{v} = \mu \mathbf{v}$ it results from adding the two equalities that $(\mathbf{A} + \mathbf{B})\mathbf{v} = (\lambda + \mu)\mathbf{v}$. (22) False. Again, the two matrices need not have the same eigenvectors. Counter example

$$\lambda = 1, \mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mu = 1, \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{AB} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 has eigenvalues $\{0, 0\}$.

- 4. (1 course point) Textbook p.404, Exercises 8.2.23-26
 - (23) Consider $(AB)x = \lambda x$. Multiply on left by B to obtain $B(AB)x = \lambda Bx \Rightarrow (BA)y = \lambda y$, proving AB and BA have same eigenvalues and eigenvectors related by y = Bx.
 - (24) (a) Multiply $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ by $(1/\lambda)\mathbf{A}^{-1}$ to obtain $\mathbf{A}^{-1}\mathbf{x} = (1/\lambda)\mathbf{x}$, q.e.d.
 - (b) If $\lambda = 0$ is an eigenvalue the matrix A is singular since $Ax = 0 \cdot x = 0$ with $x \neq 0$ thereby stating that columns of A are linearly dependent.
 - (25) (a) Assume \boldsymbol{A} admits an eigendecomposition, $\boldsymbol{A} = \boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{X}^{-1}$, then

$$\det(\boldsymbol{A}) = \det(\boldsymbol{X})\det(\boldsymbol{\Lambda})\det(\boldsymbol{X}^{-1}) = \prod_{j=1}^{m} \lambda_j > 1$$

since $\det(\boldsymbol{X})^{-1} = \det(\boldsymbol{X}^{-1})$. Since the product is greater than one, at least one factor must be greater than one.

(EC4.b. 1 point) Prove the above when \boldsymbol{A} is defective (automatically awarded is this case was considered in the submitted homework proof).

(b) No. Counter example

$$\mathbf{A} = \left(\begin{array}{cc} 8 & 0 \\ 0 & \frac{1}{16} \end{array}\right)$$

(26) See (24b)

- 5. (Computer application 4 course points) We illustrate practical applications of eigenvalue and eigenvector computation by an investigation of systems of masses and springs.
 - Task 1. (1 course point ex oficio). Read Section 6.1 of textbook, pp. 293-301.
 - Task 2. (1 course point). Consider a one-dimensional lattice of n point masses with mass m_j at position $j, 1 \le j, k \le n$, connected by n-1 springs of stiffness c_j and undeformed length l=1 between point masses j, j+1. Let \boldsymbol{u} denote the vector of displacements of the point masseses from their equilibrium positions. Write an Octave/Matlab script to construct the stiffness matrix \boldsymbol{K} of the system (cf. formula 6.12, p.296 of textbook).

Solution. Define a vector of one values, and use the diag function to build the stiffness matrix. A more complicated script using loops to individually set each element is possible, but this is the most efficient procedure. Notations follow the textbook. Note the concise construction of $\mathbf{A} \in \mathbb{R}^{(n+1)\times n}$ by adding a row of zeros.

Task 3. (2 course points). Choose $n = \operatorname{ord}(\operatorname{FirstName}) + \operatorname{ord}(\operatorname{LastName})$, with ord the ordinal of the letter in the alphabet. Compute the eigenvalues and eigenvectors of K for:

```
a) c_j = 1, 1 \le j \le n - 1
b) c_j = 1 + (j - 1)(n - 1 - j)
```

In both cases, plot the first 5 eigenvectors. What aspect of the motion of the mass-spring system is represented by each eigenvector.

Solution. (a)

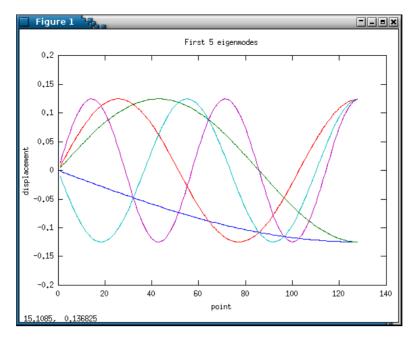


Figure 1. First 5 eigenmodes for C = I

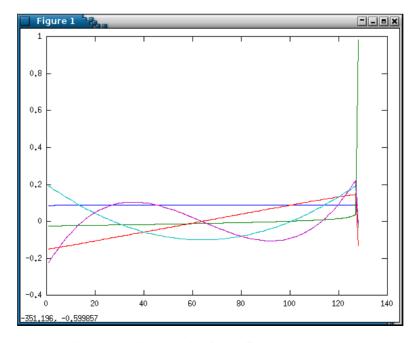


Figure 2. Eigenmodes for stiff-at-center springs