MATH547: Linear algebra for applications March 23, 2016
HOMEWORK 5 SOLUTION

Due date: April 1, 2016, 11:55PM.
Bibliography: Course lecture notes Lessons 21-23. Textbook pp. 395-424, Sections 8.2-8.4.
Typical solution procedures are shown

1. (1 course point) Textbook p.400, Exercise 8.2.1
Solution. (a) Eigenvalue computation by finding roots of characteristic polynomial

p(A) =det(A — \I)
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(b) Once the above operations have been learned and become routine, one can use Octave to carry out
the arithmetic

octave> A=[1 -2./3.; 1/2. -1/6.]; c=poly(A); disp(c);
1.00000 -0.83333 0.16667
octave> lambda=roots(c); disp(lambda’);
0.50000 0.33333
octave> X=[ null(A-lambda(l)*eye(2)) null(A-lambda(2)*eye(2)) ]; disp(X);

0.80000 0.70711
0.60000 0.70711

octave> disp( inv(X)*A*X );

0.50000  0.00000
0.00000  0.33333

octave>

(c) The operations of finding eigenvalues and eigenvectors are frequently encountered, and there exist
operations to directly obtain the eigensystem associated with a matrix.

octave> A=[3 1; -1 1]; [X,L]l=eig(A); disp([X L]1);

0.70711 -0.70711  2.00000 0.00000
-0.70711  0.70711  0.00000  2.00000

octave> det(A)
4
octave>

Note, that interpreting the results requires understanding of theoretical concepts. In this case, the
matrix has eigenvalue A\ = 2 with algebraic multiplicity m, = 2. The geometric multiplicity is n) =
dim(N(A — AI)) =1, and the matrix is defective. Notice that Octave gives only one basis vector for the
null space, and the rank of the X matrix returned by the eig procedure is equal to one

octave> disp(null (A-2xeye(2)));
-0.70711



0.70711
octave> disp( rank(X) );
2
octave>

(j) This example is instructive since it shows how identifying a block structure in the matrix can
simplify computations. Notice how block submatrices are identified, defined, and used

octave> A11=[3 4;4 3]; Al2=zeros(2); A21=zeros(2); A22=[1 3;4 5];
octave> A=[A11 A12; A21 A22]; disp(A);

3 4 0 O

4 3 0 O

0o o0 1 3

0 0 4 5
octave>

The eigenvalues could be found as the roots of the characteristic polynomial of the A matrix
octave> c=poly(A); r=roots(c); disp(r’);
7.0000 - 0.00001 7.0000 - 0.0000i -1.0000 - 0.0000i -1.0000 + 0.0000i
octave>

In this particular case with A15= A5, =0, the characteristic polynomial can be computed as
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Here we explicitly show the dimension of the identity matrix through a subscript.
octave> cl=poly(A11); rl=roots(cl); c2=poly(A22); r2=roots(c2);

octave> disp([rl r2]);

7 7
-1 -1
octave>

The same roots are found by working with submatrices. This is typically advantageous since it reduces
number of arithmetic operations.
(EC4.a 1 point) Determine the most general conditions on submatrices A, B, C, D such that

A B
det( C D >—det(AD—BC).

(k) In this example, the triangular structure of the matrix can be used to simplify computations. Indeed
the eigenvalues are directly read off the diagonal

4—X 0 0 0
1 3-X 0 0

det(A-AD=| — 7000 [m@a=NE-NE-n-).
1 —1 1 1—A

octave> A=[4 0 0 0; 1 300; -1120; 1-111]; disp(eig(A)’);
1 2 3 4

octave>

2. (1 course point) Textbook p.401, Exercise 8.2.7



(c) Procedures for complex-valued matrices are identical to those for real matrices
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Octave computational procedures work equally well with complex numbers
octave> i=sqrt(-1); A=[i 1; 0 -1+i]; c=poly(A); disp(c);
1 + 01 1 -2i -1 - 11
octave> r=roots(c); disp(r);
-1.00000 + 1.000001
0.00000 + 1.000001
octave> [X,L]=eig(A); disp(diag(L));
0+ 11
-1 + 11
octave> disp(X);
1.00000 0.70711
0.00000 -0.70711
. (1 course point) Textbook p.404, Exercises 8.2.19-22
Solution. (19) It is given that Ax = Ax. (a) Multiply eigenvalue relation by ¢ to obtain (cA)x = (c\)x.
(b) Add dx to both sides to obtain Ax +dlz = x+dex= (A+dIl)=(\+d)x, hence A +d is an
eigenvalue of A+ dI.
(c) Combine above.
(20) Multiply Az = Az, on the left by A to obtain A%x = Az =\ \z)=\x.
(21) (a) False. The key observation here is that even if two matrices have the same eigenvalue, they
generally have different eigenvectors, Ax = \x and By = \y. Counter example

10 00
)\—O,A—(O 0>,B—(O 1 ),A—I—B—Ihas)\l,g—l.

(b) True. Given Av = \v and Bv = pv it results from adding the two equalities that (A + B)v=(A+ p)v.
(22) False. Again, the two matrices need not have the same eigenvectors. Counter example

. (10N . (00 (00 .
)\—1,A—<0 0),,u—1,B—(0 1),AB-(0 O)haselgenvalues{O,O}.

. (1 course point) Textbook p.404, Exercises 8.2.23-26

(23) Consider (A B)x = Ax. Multiply on left by B to obtain B(AB)x=\Bx=(BA)y=\y, proving
A B and B A have same eigenvalues and eigenvectors related by y= Bx.

(24) (a) Multiply Az = Az by (1/A\)A~! to obtain A~z =(1/\)x, q.e.d.

(b) If A=0 is an eigenvalue the matrix A is singular since Ax =0-x =0 with x # 0 thereby stating
that columns of A are linearly dependent.

(25) (a) Assume A admits an eigendecomposition, A =X A X!, then

det(A) =det(X)det(A)det(X 1) = ﬁ Aj>1



since det(X)™! = det(X ). Since the product is greater than one, at least one factor must be greater
than one.

(EC4.b. 1 point) Prove the above when A is defective (automatically awarded is this case was consid-

ered in the submitted homework proof).
8 0
A= 1
( 16 )
(26) See (24b)

. (Computer application 4 course points) We illustrate practical applications of eigenvalue and eigenvector
computation by an investigation of systems of masses and springs.

Task 1. (1 course point ex oficio). Read Section 6.1 of textbook, pp. 293-301.

(b) No. Counter example

Task 2. (1 course point). Consider a one-dimensional lattice of n point masses with mass m; at position
J, 1 <j,k<n, connected by n — 1 springs of stiffness c¢; and undeformed length [ =1 between point
masses 7,7+ 1. Let u denote the vector of displacements of the point masseses from their equilibrium
positions. Write an Octave/Matlab script to construct the stiffness matrix K of the system (cf. formula
6.12, p.296 of textbook).

Solution. Define a vector of one values, and use the diag function to build the stiffness matrix. A
more complicated script using loops to individually set each element is possible, but this is the most
efficient procedure. Notations follow the textbook. Note the concise construction of A € R"+HD*" by
adding a row of zeros.

octave> function K=stiff(C)
n=max(size(C))-1;
o=ones(n,1); z= zeros(l,n);
A=[diag(o); z] - [diag(o(l:n-1),-1); z];
K=A’*Cx*A;
end;
octave>
Task 3. (2 course points). Choose n=ord(FirstName) 4 ord(LastName), with ord the ordinal of the letter
in the alphabet. Compute the eigenvalues and eigenvectors of K for:
a)c;j=1,1<j<n—1
b)c;j=1+(j-1)(n—1-)
In both cases, plot the first 5 eigenvectors. What aspect of the motion of the mass-spring system is
represented by each eigenvector.
Solution. (a)
octave> n=129; C=eye(n); K=stiff(C); disp(K(1:4,1:4));
2 -1 0 O
-1 2 -1 0
0 -1 2 -1
0 0 -1 2
octave> [X,L]l=eig(K);
octave> 1=1:n-1;
octave> xlabel(’point’); ylabel(’displacement’); title(’First 5 eigenmodes’);
octave> plot(l,X(:,1),1,X(:,2),1,X(:,3),1,X(:,4),1,X(:,5));
octave> cd /home/student/courses/MATH547/homework; print -dpng eigenmodes.png;

octave>



(b)

octave>

octave>
octave>
octave>
octave>
octave>

octave>
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Figure 1. First 5 eigenmodes for C' =1

n=129;
for j=1:n
c(=1+(G-D*(n-1-3);
end;
C=diag(c); K=stiff(C); [X,Ll=eig(X);
1=1:n-1;
xlabel(’point’); ylabel(’displacement’); title(’First 5 eigenmodes’);
plot(1,X(:,1),1,X(:,2),1,X(:,3),1,X(:,4),1,X(:,5));
cd /home/student/courses/MATH547/homework; print -dpng eigenmodes.png;
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Figure 2. Eigenmodes for stiff-at-center springs



