Homework 6

Due date: May 2, 2016, 10:00 AM.

This final homework is meant as a course review and final examination preparation. All questions are representative of what you can expect on the final exam.

1. (1 course point) Show that if AC = CA, then

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - CB).$$

2. (1 course point) Compute the value of the determinant

$$\Delta = \begin{vmatrix} 9 & 1 & 9 & 9 & 9 \\ 9 & 0 & 9 & 9 & 2 \\ 4 & 0 & 0 & 5 & 0 \\ 9 & 0 & 3 & 9 & 0 \\ 6 & 0 & 0 & 7 & 0 \end{vmatrix}$$

Explain calculation steps.

- 3. (1 course point) Suppose \boldsymbol{x} is an eigenvector of \boldsymbol{A} , corresponding to eigenvalue λ .
 - a) Show that \boldsymbol{x} is an eigenvector of $5\boldsymbol{I} \boldsymbol{A}$. What is the corresponding eigenvalue?
 - b) Show that \boldsymbol{x} is an eigenvector of $5\boldsymbol{I} 3\boldsymbol{A} + \boldsymbol{A}^2$. What is the corresponding eigenvalue?
- 4. (1 course point) Let

$$M = \left(\begin{array}{cc} A & X \\ 0 & B \end{array}\right).$$

Use result from Problem 1 to prove that

$$p_{\boldsymbol{M}}(\lambda) = p_{\boldsymbol{A}}(\lambda) p_{\boldsymbol{B}}(\lambda),$$

with $p_{\mathbf{M}}(\lambda), p_{\mathbf{A}}(\lambda), p_{\mathbf{B}}(\lambda)$, the characteristic polynomials of matrices $\mathbf{M}, \mathbf{A}, \mathbf{B}$.

5. (1 course point) Compute A^{100} for

$$\boldsymbol{A} = \left(\begin{array}{cc} 3 & -1 \\ -1 & 3 \end{array}\right).$$

6. (1 course point) Compute the singular value decomposition of

$$\boldsymbol{A} = \left(\begin{array}{cc} 3 & -3 \\ 0 & 0 \\ 1 & 1 \end{array}\right).$$

7. (1 course point) Compute the singular value decomposition of

$$\boldsymbol{A} = \left(\begin{array}{rrr} 3 & 2 & 2 \\ 2 & 3 & -2 \end{array}\right).$$

- 8. (1 course point) Consider $\mathbf{A} \in \mathbb{R}^{m \times m}$, symmetric.
 - a) Show that $C(\mathbf{A})^{\perp} = N(\mathbf{A})$. (\mathcal{S}^{\perp} is the orthogonal complement of vector space \mathcal{S})
 - b) Show that any $\boldsymbol{y} \in \mathbb{R}^m$ can be written as $\boldsymbol{y} = \boldsymbol{u} + \boldsymbol{v}$, with $\boldsymbol{u} \in C(\boldsymbol{A})$, and $\boldsymbol{v} \in N(\boldsymbol{A})$.