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Lesson concepts:

� Vectors

� Vector operations

� Linear combinations

� Matrix vector multiplication
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� Some quantities arising in applications can be expressed as single numbers, called �scalars�

� Speed of a car on a highway v= 35 mph

� A person's height H = 183 cm

� Many other quantitites require more than one number:

� Position in a city: �Intersection of 86th St and 3rd Av�

� Position in 3D space: (x; y; z)

� Velocity in 3D space: (u; v; w)
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De�nition. A vector is a grouping of m scalars
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� The scalars usually are naturals (S=N), integers (S=Z), rationals (S=Q), reals (S=R),
or complex numbers (S=C)

� We often denote the dimension and set of scalars through the notation v2Sm, e.g. v2Rm

� Sets of vectors are denoted as
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� A vector can also be interpreted as a function from a subset of N to S

v: f1; 2; ::;mg!S
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� Vector addition. Consider two vectors u; v 2 V . We de�ne the sum of the two vectors
as the vector containing the sum of the components
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� Scalar multiplication. Consider �2S, u2V. We de�ne the multiplication of vector u

by scalar � as the vector containing the product of each component of u with the scalar �
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� Linear combination. Let �; � 2S, u;v 2V. De�ne a linear combination of vectors by
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"Start at the center of town. Go east 3 blocks and north 2 blocks. What is your �nal position?"
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Linear combinations allow us to express a position in space using a standard set of directions.
Questions:

� How many standard directions are needed?

� Can any position be speci�ed as a linear combination?

� How to �nd the scalars needed to express a position as a linear combination?
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Seek a more compact notation for the linear combination
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� Group the vectors together to form a �matrix�
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� Group the scalars together to form a vector
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� De�ne matrix-vector multiplication
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