- New concepts:
- Matrix-matrix product
- Matrix transpose
- Transpose of matrix sums, products
- Scalar product of two vectors

Definition. Consider matrices $\boldsymbol{A}=\left(\begin{array}{lll}\boldsymbol{a}_{1} & \ldots & \boldsymbol{a}_{n}\end{array}\right) \in \mathbb{R}^{m \times n}$, and $\boldsymbol{X}=\left(\begin{array}{lll}\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{p}\end{array}\right) \in \mathbb{R}^{n \times p}$. The matrix product $\boldsymbol{B}=\boldsymbol{A} \boldsymbol{X}$ is a matrix $\boldsymbol{B}=\left(\begin{array}{lll}\boldsymbol{b}_{1} & \ldots & \boldsymbol{b}_{p}\end{array}\right) \in \mathbb{R}^{m \times p}$ with column vectors given by the matrix vector products

$$
\boldsymbol{b}_{k}=\boldsymbol{A} \boldsymbol{x}_{k}, \text { for } k=1,2 \ldots, p
$$

- A matrix-matrix product is simply a set of matrix-vector products, and hence expresses multiple linear combinations in a concise way.
- The dimensions of the matrices must be compatible, the number of rows of X must equal the number of columns of \boldsymbol{A}.
- A matrix-vector product is a special case of a matrix-matrix product when $p=1$.
- We often write $\boldsymbol{B}=\boldsymbol{A} \boldsymbol{X}$ in terms of columns as

$$
\left(\begin{array}{lll}
\boldsymbol{b}_{1} & \ldots & \boldsymbol{b}_{p}
\end{array}\right)=\boldsymbol{A}\left(\begin{array}{lll}
\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{p}
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{A} \boldsymbol{x}_{1} & \ldots & \boldsymbol{A} \boldsymbol{x}_{p}
\end{array}\right)
$$

Definition. Given a matrix $A \in \mathbb{R}^{m \times n}$,

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

the transpose of \boldsymbol{A}, denoted as $\boldsymbol{A}^{T} \in \mathbb{R}^{n \times m}$ is

$$
\boldsymbol{A}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 m} & a_{2 m} & \cdots & a_{n m}
\end{array}\right)
$$

Intuitively: "rows become columns, columns become rows"

- Recall that a vector is the special case of a matrix with a single column, $\boldsymbol{v} \in \mathbb{R}^{m \times 1}$. The transpose of a vector is $v^{T} \in \mathbb{R}^{1 \times m}$ a matrix with a single row, known as a row vector.
- Given a matrix $A \in \mathbb{R}^{m \times n}$ expressed through its column vectors

$$
\boldsymbol{A}=\left(\begin{array}{llll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \ldots & \boldsymbol{a}_{n}
\end{array}\right)
$$

its transpose can be expressed as

$$
\boldsymbol{A}^{T}=\left(\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
\boldsymbol{a}_{2}^{T} \\
\vdots \\
\boldsymbol{a}_{n}^{T}
\end{array}\right) \in \mathbb{R}^{n \times m}
$$

- For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{m},(\boldsymbol{u}+\boldsymbol{v})^{T}=\boldsymbol{u}^{T}+\boldsymbol{v}^{T}$. Proof: by direct computation

$$
\begin{gathered}
(\boldsymbol{u}+\boldsymbol{v})^{T}=\left(\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right)+\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right)\right)^{T}=\left(\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{m}+v_{m}
\end{array}\right)^{T}=\left(\begin{array}{lll}
u_{1}+v_{1} & \ldots & u_{m}+v_{m}
\end{array}\right) \\
=\left(\begin{array}{lll}
u_{1} & \ldots & u_{m}
\end{array}\right)+\left(\begin{array}{lll}
v_{1} & \ldots & v_{m}
\end{array}\right)=\boldsymbol{u}^{T}+\boldsymbol{v}^{T}
\end{gathered}
$$

- For $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times n},(\boldsymbol{A}+\boldsymbol{B})^{T}=\boldsymbol{A}^{T}+\boldsymbol{B}^{T}$. Proof: by direct computation using column vectors of $\boldsymbol{A}, \boldsymbol{B}$

$$
\begin{gathered}
\boldsymbol{A}=\left(\begin{array}{lll}
\boldsymbol{a}_{1} & \ldots & \boldsymbol{a}_{n}
\end{array}\right), \boldsymbol{B}=\left(\begin{array}{lll}
\boldsymbol{b}_{1} & \ldots & \boldsymbol{b}_{n}
\end{array}\right) \\
(\boldsymbol{A}+\boldsymbol{B})^{T}=\left(\begin{array}{lll}
\boldsymbol{a}_{1}+\boldsymbol{b}_{1} & \ldots & \boldsymbol{a}_{n}+\boldsymbol{b}_{n}
\end{array}\right)^{T}=\left(\begin{array}{c}
\left(\boldsymbol{a}_{1}+\boldsymbol{b}_{1}\right)^{T} \\
\vdots \\
\left(\boldsymbol{a}_{n}+\boldsymbol{b}_{n}\right)^{T}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{a}_{1}^{T}+\boldsymbol{b}_{1}^{T} \\
\vdots \\
\boldsymbol{a}_{n}^{T}+\boldsymbol{b}_{n}^{T}
\end{array}\right)=\boldsymbol{A}^{T}+\boldsymbol{B}^{T}
\end{gathered}
$$

- Consider $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{x} \in \mathbb{R}^{n}$. What is $(\boldsymbol{A} \boldsymbol{x})^{T}$? Recall that $\boldsymbol{A} \boldsymbol{x}$ is a linear combination of columns of \boldsymbol{A}

$$
\boldsymbol{A} \boldsymbol{x}=\left(\begin{array}{lll}
\boldsymbol{a}_{1} & \ldots & \boldsymbol{a}_{n}
\end{array}\right) \boldsymbol{x}=x_{1} \boldsymbol{a}_{1}+\ldots+x_{n} \boldsymbol{a}_{n}
$$

Take transpose of vector sum to obtain

$$
(\boldsymbol{A} \boldsymbol{x})^{T}=x_{1} \boldsymbol{a}_{1}^{T}+\ldots+x_{n} \boldsymbol{a}_{n}^{T}=\left(\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{a}_{1}^{T} \tag{1}\\
\vdots \\
\boldsymbol{a}_{n}^{T}
\end{array}\right)=\boldsymbol{x}^{T} \boldsymbol{A}^{T}
$$

- Now consider $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{B} \in \mathbb{R}^{n \times p}$. Obtain $(\boldsymbol{A} \boldsymbol{B})^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$ by applying (1)

$$
(\boldsymbol{A B})^{T}=\left(\begin{array}{lll}
\boldsymbol{A} \boldsymbol{b}_{1} & \ldots & \boldsymbol{A} \boldsymbol{b}_{n}
\end{array}\right)^{T}=\left(\begin{array}{c}
\left(\boldsymbol{A} \boldsymbol{b}_{1}\right)^{T} \\
\vdots \\
\left(\boldsymbol{A} \boldsymbol{b}_{n}\right)^{T}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{1}^{T} \boldsymbol{A}^{T} \\
\vdots \\
\boldsymbol{b}_{n}^{T} \boldsymbol{A}^{T}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{1}^{T} \\
\vdots \\
\boldsymbol{b}_{n}^{T}
\end{array}\right) \boldsymbol{A}^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}
$$

- A special case of a matrix-matrix product occurs when the two factors correspond to a row multiplying a column vector. The result is in this case a single scalar.

Definition. Given two real-valued (column) vectors $u, v \in \mathbb{R}^{m}$ the scalar product is the matrix-matrix multiplication

$$
\boldsymbol{u}^{T} \boldsymbol{v}=\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{m}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right)=\sum_{i=1}^{m} u_{i} v_{i}
$$

Note the compatibility of number of components, $\boldsymbol{u} \in \mathbb{R}^{m \times 1} \Rightarrow \boldsymbol{u}^{T} \in \mathbb{R}^{1 \times m}, \boldsymbol{v} \in \mathbb{R}^{m \times 1}$, $\boldsymbol{u}^{T} \boldsymbol{v} \in \mathbb{R}^{1 \times 1}=\mathbb{R}$.

- The scalar product can be viewed as function taking two vectors as arguments and producing a single scalar as a result. The usual notation in this case is

$$
\langle,\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R},\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{T} \boldsymbol{v}=\sum_{i=1}^{m} u_{i} v_{i}
$$

with $\mathcal{V}=\mathbb{R}^{m}$.

