- New concepts:
  - Norm computation examples
  - Angle between two vectors is defined using scalar product and norm
  - Solving a linear system

**Definition.** Consider vector  $\mathbf{u} = (u_1 \dots u_m)^T \in \mathbb{R}^m$ . The p-norm of  $\mathbf{u}$  is a function  $\| \|_p$ :  $\mathbb{R}^m \to \mathbb{R}_+$  defined by

$$\|\boldsymbol{u}\|_p = \left(\sum_{i=1}^m |u_i|^p\right)^{1/p}.$$

```
octave> u=[1 2 3]'; unrm1=norm(u,1); disp(unrm1);
octave> unrm2=norm(u,2); disp(unrm2);
octave> unrminf=norm(u,inf); disp(unrminf);
octave>
```

**Definition.** Consider vector  $u = (u_1 \dots u_m)^T \in \mathbb{R}^m$ . The p-norm of u is a function  $|| ||_p$ :  $\mathbb{R}^m \to \mathbb{R}_+$  defined by

$$\|\boldsymbol{u}\|_p = \left(\sum_{i=1}^m |u_i|^p\right)^{1/p}.$$

```
octave> u=[1 2 3]'; unrm1=norm(u,1); disp(unrm1);
6
octave> unrm2=norm(u,2); disp(unrm2);
octave> unrminf=norm(u,inf); disp(unrminf);
octave>
```

**Definition.** Consider vector  $\mathbf{u} = (u_1 \dots u_m)^T \in \mathbb{R}^m$ . The p-norm of  $\mathbf{u}$  is a function  $\| \|_p$ :  $\mathbb{R}^m \to \mathbb{R}_+$  defined by

$$\| \boldsymbol{u} \|_{p} = \left( \sum_{i=1}^{m} |u_{i}|^{p} \right)^{1/p}$$
.

```
octave> u=[1 2 3]'; unrm1=norm(u,1); disp(unrm1);
6
octave> unrm2=norm(u,2); disp(unrm2);
3.7417
octave> unrminf=norm(u,inf); disp(unrminf);
octave>
```

**Definition.** Consider vector  $u = (u_1 \dots u_m)^T \in \mathbb{R}^m$ . The p-norm of u is a function  $|| ||_p$ :  $\mathbb{R}^m \to \mathbb{R}_+$  defined by

$$\| \boldsymbol{u} \|_{p} = \left( \sum_{i=1}^{m} |u_{i}|^{p} \right)^{1/p}$$
.

```
octave> u=[1 2 3]'; unrm1=norm(u,1); disp(unrm1);
6
octave> unrm2=norm(u,2); disp(unrm2);
3.7417
octave> unrminf=norm(u,inf); disp(unrminf);
3
octave>
```

**Definition.** Consider vectors  $u, v \in \mathbb{R}^m$ . The angle  $\theta$  between u, v is defined by

$$\cos \theta = \frac{\boldsymbol{u}^T \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}.$$

## Notes:

- 1. The angle is defined using the concept of scalar product and norm.
- 2. Recall that u, v are orthogonal if  $u^T v = 0$ , which implies  $\cos \theta = 0$ , hence  $\theta = \pi/2$

1 2 3 4 5 6 7 8



Cosine theorem: If  $\vec{c} = \vec{a} + \vec{b}$  then  $c^2 = a^2 + b^2 - 2ab\cos\theta$ , with  $a = |\vec{a}|, b = |\vec{b}|, c = |\vec{c}|$ 

Proof using algebraic concepts of norm and scalar product:

$$c = a + b \Rightarrow c^{T} = a^{T} + b^{T}$$

$$c^{T}c = (a^{T} + b^{T})(a + b) \Rightarrow ||c||^{2} = ||a||^{2} + ||b||^{2} + 2a^{T}b \Rightarrow$$

$$||c||^{2} = ||a||^{2} + ||b||^{2} + 2||a|| ||b|| \cos(\pi - \theta) \Rightarrow ||c||^{2} = ||a||^{2} + ||b||^{2} - 2||a|| ||b|| \cos \theta$$

- We've interpreted Ax = b = Ib to signify equality of a two ways of expressing a vector:
  - 1. As a linear combination of the columns of A, namely Ax
  - 2. As a linear combination of the columns of I, namely Ib
- ullet One of the basic linear algebra problems is to find the coordinates a vector in terms of columns of A given its coordinates b in terms of the identity matrix I
- Example: Find  $x \in \mathbb{R}^3$  such that

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ 3 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Equivalent to writing out the system

$$\begin{cases} x_1 + 2x_2 - x_3 &= 2 \\ 2x_1 - x_2 + x_3 &= 2 \\ 3x_1 - x_2 - x_3 &= 1 \end{cases}$$

• Idea: make one fewer unknown appear in each equation. Use first equation to eliminate  $x_1$  in equations 2,3

$$\begin{cases} x_1 + 2x_2 - x_3 &= 2 \\ 2x_1 - x_2 + x_3 &= 2 \\ 3x_1 - x_2 - x_3 &= 1 \end{cases} \Rightarrow \begin{cases} x_1 + 2x_2 - x_3 &= 2 \\ -5x_2 + 3x_3 &= -2 \\ -7x_2 + 2x_3 &= -5 \end{cases}$$

• Use second equation to eliminate  $x_2$  in equation 3

$$\begin{cases} x_1 + 2x_2 - x_3 = 2 \\ -5x_2 + 3x_3 = -2 \\ -7x_2 + 2x_3 = -5 \end{cases} \Rightarrow \begin{cases} x_1 + 2x_2 - x_3 = 2 \\ -5x_2 + 3x_3 = -2 \\ -\frac{11}{5}x_3 = -\frac{11}{5} \end{cases}$$

• Start finding components from last to first to obtain  $x_3 = 1$ ,  $x_2 = 1$ ,  $x_1 = 1$ 

• Explicitly writing the unknowns  $x_1, x_2, x_3$  is not necessary. Intoduce the "bordered" matrix

$$\left(\begin{array}{cccc}
1 & 2 & -1 & 2 \\
2 & -1 & 1 & 2 \\
3 & -1 & -1 & 1
\end{array}\right)$$

- Define allowed operations:
  - multiply a row by a non-zero scalar
  - add a row to another
- Bordered matrices obtained by the allowed operations are said to be similar, in that the solution of the linear system stays the same

$$\begin{pmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 3 & -1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & -7 & 2 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & -\frac{11}{5} & -\frac{11}{5} \end{pmatrix}$$

To find solution, use allowed operations to make an identity matrix appear

$$\begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & -\frac{11}{5} & -\frac{11}{5} \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

The vector in the "border" is the solution