- New concepts:
 - Vector space
 - Linear mappings
 - Vector subspace
 - Left null space

Vector space

Up to now we have taken vectors as belonging to some set $v \in V$, such as $b \in \mathbb{R}^m$, without any special restrictions on V. In applications we require V to have additional structure, such as ensuring that the sum of two vectors stays within the set.

Definition. $(\mathcal{V}, \mathcal{S}, +)$ is a vector space if for any $u, v, w \in \mathcal{V}$, and any $\alpha, \beta \in \mathcal{S}$, with \mathcal{S} a scalar field, the following properties hold:

Closed. $u + v \in \mathcal{V}$

Associativity. u + (v + w) = (u + v) + w

Null element. $\exists 0 \in \mathcal{V}$ such that u + 0 = u

Inverse element. $\exists (-u)$ such that u + (-u) = 0

Commutativity. u + v = v + u

Distributivity over scalar addition. $(\alpha + \beta)u = \alpha u + \beta v$

Distributivity over vector addition. $\alpha(u+v) = \alpha u + \alpha v$

Scalar identity. $1 \in S \Rightarrow 1u = u$

Recall the definition of a function $f: X \mapsto Y$: a relation between two sets X, Y such that to any element in $x \in X$ there is associated a single element in Y denoted as $f(x) \in Y$.

Definition. A linear mapping is a function between two vector spaces \mathcal{X}, \mathcal{Y} over the same scalar field $S, f: \mathcal{X} \mapsto \mathcal{Y}$, with the property that $\forall u, v \in \mathcal{X}, \forall \alpha, \beta \in S$

$$f(\alpha \boldsymbol{u} + \beta \boldsymbol{v}) = \alpha f(\boldsymbol{u}) + \beta f(\boldsymbol{v})$$

A matrix $A \in \mathbb{R}^{m \times n}$ is a linear mapping from the vector space $(\mathbb{R}^n, \mathbb{R}, +)$ to the vector space $(\mathbb{R}^m, \mathbb{R}, +)$

 $A: \mathbb{R}^n \mapsto \mathbb{R}^m$

$$oldsymbol{x} \in \mathbb{R}^n, oldsymbol{b} \in \mathbb{R}^m, oldsymbol{b} = oldsymbol{A}oldsymbol{x}$$

Note: matrices are linear mappings between vector spaces for which we now the number of components necessary to specify vectors in the domain, codomain.

The most commonly used vector spaces are \mathbb{R}^m for some $m \in \mathbb{N}$. For example \mathbb{R}^3 is used as a model for three-dimensional Euclidean space in mechanics. Within three-dimensional space we recognize entities such as lines, planes that require fewer than 3 numbers to specify a position on the line or within the plane. This concept is fomalized by the definition

Definition. U is a vector subspace of vector space V over the same scalar field S if for any $u, v \in U$, any $\alpha, \beta \in S$

Inclusion. $u \in V$ (a vector in the subspace is also in the enclosing vector space)

Closed. $\alpha u + \beta v \in U$ (linear combinations of subspace vectors stay within the subspace)

We denote the vector subspace relation by $U \leq V$ as in $\mathbb{R} \leq \mathbb{R}^3$ stating that the real line is a subspace of three-dimensional space.

Recall definitions of column space, null space of $\boldsymbol{A} \in \mathbb{R}^{m imes n}$

$$C(\mathbf{A}) = \{ \mathbf{b} \in \mathbb{R}^m | \exists \mathbf{x} \in \mathbb{R}^n \text{ such that } \mathbf{b} = \mathbf{A}\mathbf{x} \} \subseteq \mathbb{R}^m$$
$$N(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0} \} \subseteq \mathbb{R}^n$$

Note that $C(\mathbf{A}) \subseteq \mathbb{R}^m$, $N(\mathbf{A}) \subseteq \mathbb{R}^n$ means that $C(\mathbf{A})$, $N(\mathbf{A})$ are subsets of \mathbb{R}^m , \mathbb{R}^n respectively. In fact, we can make a stronger statement, that they are vector subspaces

 $C(\mathbf{A}) \leq \mathbb{R}^m, N(\mathbf{A}) \leq \mathbb{R}^n$

Proof. Let $\boldsymbol{u}, \boldsymbol{v} \in C(\boldsymbol{A})$, $\alpha, \beta \in S$. By definiton of $C(\boldsymbol{A})$ there exist $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ such that $\boldsymbol{u} = \boldsymbol{A}\boldsymbol{x}$ and $\boldsymbol{v} = \boldsymbol{A}\boldsymbol{y}$. Using vector space properties

$$\alpha \boldsymbol{u} + \beta \boldsymbol{v} = \alpha \boldsymbol{A} \boldsymbol{x} + \beta \boldsymbol{A} \boldsymbol{y} = \boldsymbol{A} (\alpha \boldsymbol{x} + \beta \boldsymbol{y}),$$

hence $\alpha u + \beta v \in C(A)$ (it is obtained as the image through the linear mapping A of $\alpha x + \beta y$)

• Recall that if $u^T v = 0$, with $u, v \in \mathbb{R}^m$ then $u \perp v$ (orthogonal)

Proposition. If $u_1, u_2, ..., u_n \in \mathbb{R}^m$ are non-zero $(u_i \neq 0)$ and pairwise orthogonal, $u_i^T u_j = 0$ for $i \neq j$ then they form a linearly independent set of vectors.

Proof. Consider the equation equating the linear combination $c_1u_1 + ... + c_nu_n$ to the zero vector

$$c_1 \boldsymbol{u}_1 + \ldots + c_n \boldsymbol{u}_n = \boldsymbol{0} \tag{1}$$

Multiply on the left by u_i^T and use orthogonality to obtain $c_i = 0$ for i = 1, ..., n. The only solution to (1) is $c_1 = c_2 = ... = c_n = 0$, hence $\{u_1, u_2, ..., u_n\}$ is a linearly independent set.

Left null space

- We've seen that $C(\mathbf{A}) \leq \mathbb{R}^m$, the row space of a matrix is a subspace of \mathbb{R}^m
- Typically it is not the entire space \mathbb{R}^m
- What's the missing part?
- These would be vectors within \mathbb{R}^m not reachable by linear combinations of the columns of A.
- One way to characterize this is to consider vectors $m{y} \in \mathbb{R}^m$ orthogonal to the columns of $m{A}$

$$\boldsymbol{A} = (\boldsymbol{a}_1 \ \dots \ \boldsymbol{a}_n), \boldsymbol{a}_j^T \boldsymbol{y} = 0$$

• The above can more compactly be written as $A^T y = 0$ with

$$oldsymbol{A}^T \!=\! \left(egin{array}{c} oldsymbol{a}_1^T \ dots \ oldsymbol{a}_n^T \end{array}
ight)$$

• Define the *left null space* of A as $N(A^T) \subseteq \mathbb{R}^m$