- New concepts:
 - Row space
 - Basis for a vector space
 - Dimension of a vector space
 - Sum, direct sum, and intersection of vector spaces
 - Orthogonal subspaces, orthogonal complements
 - Fundamental theorem of linear algebra (FTLA) for $A \in \mathbb{R}^{m \times n}$:

 $C(\boldsymbol{A}) \oplus N(\boldsymbol{A}^T) = \mathbb{R}^m, \quad C(\boldsymbol{A}) \perp N(\boldsymbol{A}^T), \quad C(\boldsymbol{A}) \cap N(\boldsymbol{A}^T) = \{\boldsymbol{0}\}, \\ C(\boldsymbol{A}^T) \oplus N(\boldsymbol{A}) = \mathbb{R}^n, \quad C(\boldsymbol{A}^T) \perp N(\boldsymbol{A}), \quad C(\boldsymbol{A}^T) \cap N(\boldsymbol{A}) = \{\boldsymbol{0}\}.$

For A∈ ℝ^{m×n}, seen as a linear mapping A: ℝⁿ → ℝ^m, that given input vector x ∈ ℝⁿ returns output vector b ∈ ℝ^m, b = Ax, we have defined the vector space of possible outputs, the column space of A

$$C(A) = \{ b \in \mathbb{R}^m | \exists x \in \mathbb{R}^n \text{ such that } b = Ax \} \subseteq \mathbb{R}^m$$

The transpose A^T ∈ ℝ^{n×m} can also be seen as a linear mapping. Given some input vector y ∈ ℝ^m the mapping returns the output vector c ∈ ℝⁿ, c = A^Ty. The set of possible outputs is the column space of A^T. Since columns of A^T are rows of A, we can define the row space of A as

$$R(\boldsymbol{A}) = C(\boldsymbol{A}^T) = \{ \boldsymbol{c} \in \mathbb{R}^n \mid \exists \boldsymbol{y} \in \mathbb{R}^m \text{ such that } \boldsymbol{c} = \boldsymbol{A}^T \boldsymbol{y} \} \subseteq \mathbb{R}^n$$

Definition. A set of vectors $u_1, ..., u_n \in V$ is a basis for vector space V if:

1. $u_1, ..., u_n$ are linearly independent;

2. span $\{u_1, ..., u_n\} = \mathcal{V}$.

Definition. The number of vectors $u_1, ..., u_n \in V$ within a basis is the dimension of the vector space V.

Definition. Given two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$, the sum is the set $\mathcal{U} + \mathcal{V} = \{ u + v \mid u \in \mathcal{U}, v \in \mathcal{V} \}$.

Definition. Given two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$, the direct sum is the set $\mathcal{U} \oplus \mathcal{V} = \{u + v \mid \exists ! u \in \mathcal{U}, \exists ! v \in \mathcal{V}\}$. (unique decomposition)

Definition. Given two vector subspaces (U, S, +), (V, S, +) of the space (W, S, +), the intersection is the set

$$\mathcal{U} \cap \mathcal{V} = \{ oldsymbol{x} \, | \, oldsymbol{x} \in \mathcal{U} \,, oldsymbol{x} \in \mathcal{V} \, \}.$$

Definition. Two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$ are orthogonal subspaces, denoted $\mathcal{U} \perp \mathcal{V}$ if $u^T v = 0$ for any $u \in \mathcal{U}, v \in \mathcal{V}$.

Definition. Two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$ are orthogonal complements, denoted $\mathcal{U} = \mathcal{V}^{\perp}$, $\mathcal{V} = \mathcal{U}^{\perp}$ if they are orthogonal subspaces and $\mathcal{U} \cap \mathcal{V} = \{\mathbf{0}\}$, *i.e.*, the null vector is the only common element of both subspaces.

- A matrix $A \in \mathbb{R}^{m \times n}$ is a linear mapping from \mathbb{R}^n to \mathbb{R}^m , $A: \mathbb{R}^n \to \mathbb{R}^m$
- The transpose $A^T \in \mathbb{R}^{n imes m}$ is a linear mapping from \mathbb{R}^m to \mathbb{R}^n , $A^T : \mathbb{R}^m o \mathbb{R}^n$
- To each matrix $A \in \mathbb{R}^{m \times n}$ associate four fundamental subspaces:
 - 1. Column space, $C(A) = \{ b \in \mathbb{R}^m | \exists x \in \mathbb{R}^n \text{ such that } b = Ax \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m reachable by linear combination of columns of A
 - 2. Left null space, $N(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{R}^m | \mathbf{A}^T \mathbf{y} = 0 \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m not reachable by linear combination of columns of \mathbf{A}
 - 3. Row space, $R(\mathbf{A}) = C(\mathbf{A}^T) = \{ \mathbf{c} \in \mathbb{R}^n | \exists \mathbf{y} \in \mathbb{R}^m \text{ such that } \mathbf{c} = \mathbf{A}^T \mathbf{y} \} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^n reachable by linear combination of rows of \mathbf{A}
 - 4. Null space, $N(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = 0\} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^n not reachable by linear combination of rows of \mathbf{A}

Theorem. Given the linear mapping associated with matrix $A \in \mathbb{R}^{m \times n}$ we have:

- 1. $C(A) \oplus N(A^T) = \mathbb{R}^m$, the direct sum of the column space and left null space is the codomain of the mapping
- 2. $C(\mathbf{A}^T) \oplus N(\mathbf{A}) = \mathbb{R}^n$, the direct sum of the row space and null space is the domain of the mapping
- 3. $C(\mathbf{A}) \perp N(\mathbf{A}^T)$ and $C(\mathbf{A}) \cap N(\mathbf{A}^T) = \{\mathbf{0}\}$, the column space is orthogonal to the left null space, and they are orthogonal complements of one another,

$$C(\boldsymbol{A}) = N(\boldsymbol{A}^T)^{\perp}, \ N(\boldsymbol{A}^T) = C(\boldsymbol{A})^{\perp} \ .$$

4. $C(\mathbf{A}^T) \perp N(\mathbf{A})$ and $C(\mathbf{A}^T) \cap N(\mathbf{A}) = \{\mathbf{0}\}$, the row space is orthogonal to the null space, and they are orthogonal complements of one another,

$$C(\mathbf{A}^T) = N(\mathbf{A})^{\perp}, \ N(\mathbf{A}) = C(\mathbf{A}^T)^{\perp}$$

Gil Strang introduced a very useful graphical represenation in "The Fundamental Theorem of Linear Algebra." *Amer. Math. Monthly* **100**, 848-855, 1993.

