Lesson 9: Proof of fundamental theorem of linear algebra

e Recall: to each matrix A € R"™*" associate four fundamental subspaces:

1. Column space, C(A)={beR™|dx € R"suchthatb=Ax} CR™, the part of R™
reachable by linear combination of columns of A

2. Left null space, N(AT)={y e R™| ATy =0} CR™, the part of R™ not reachable
by linear combination of columns of A

3. Row space, R(A)=C(AT)={ceR"|Jy € R™suchthat c= ATy} CR", the part
of R™ reachable by linear combination of rows of A

4. Null space, N(A)={x cR"| Az =0} CRR", the part of R" not reachable by linear
combination of rows of A

The fundamental theorem of linear algebra (FTLA) states

C(A), N(AT)<R™, C(A)LN(AT), C(A)NN(AT)={0}, C(A)@® N(AT)=R™

C(AT),N(A)<R",C(AT)LN(A), C(AT)nN(A)={0}, C(AT)® N(A)=R"

e New concepts:

— Proof techniques, properties of direct sums



Properties of direct sums

Lemma 1. Let U,V, be subspaces of vector space VV. Then W =U ®V if and only if
. W=U+YV, and
i.UNY={0}.

Proof. W=U &V =W =U +V by definition of direct sum, sum of vector subspaces. To
prove that W =U &V =UNV ={0}, consider w cUUNYV. Since weU and w € write

w=w+0 (weld,0€V), w=0+w (0€U,we),

and since expression w = u + v is unique, it results that w = 0. Now assume (i), (ii) and
establish an unique decomposition. Assume there might be two decompositions of w € WV,
w = U] + v, W= Uy + v, with uy, us € U, v1, vo € V. Obtain w1 + v1 = us + Vo, or
T =1UuU] — Uy =Vy— V1. Since x €U and x €V it results that x =0, and u, = us, V1 = V9,
i.e., the decomposition is unique. [

Lemma 2. Orthogonal complements of R™ (m €N, finite), U,V <R™, U=V+, V=U",
form a direct sum U ©V =R"™. (proved after discussion of Gram-Schmidt procedure)



FTLA - Graphical representation

.
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R"=C(ATY® N(A) usually: m >n R"=N(AT)® C(A)
C(AT)LN(A) N(AT)1C(A)



FTLA proof (i & ii)

i. C'(A) <R™ (column space is vector subspace of codomain of A:R"™— R™)

Proof. Consider arbitrary u, v € C(A), «, f € R. Verify vector subspace properties
(Lesson 7 p.4):

i. Inclusion (elements of C'(A) are in R™) u € R™, yes by definition of C(A) =
{beR™|dx € R"suchthat b= Ax}. (This immediately results from definitions and
will not be shown explicitly in following proofs).

ii. Closed (au + fv € C(A)). By definition of C(A), u, v € C(A) implies existence
of x,y € R" such that u= Az, v=Ay. Compute acu + fv=a(Ax) + f(Ay) =
A(ax + By), and note that since ax + fy € R", au+ fv e C(A). O

ii. N(AT) <IR™ (left null space is vector subspace of domain of A: R"— R™)

Proof. Consider arbitrary o, S € R, =,y € N(A?) = A’z = 0, ATy = 0. Compute
Al(ax+ By)=a(A'z)+ B(ATy)=a -0+ 3-0=0, hence ax + By € N(AT) ]



FTLA Proof (iii,iv)

ii. C(A)LN(AT) (column space is orthogonal to left null space).

Proof. Consider arbitrary u € C(A),v € N(AT). By definition of C(A), 3z € R" such
that u= Ax, and by definition of N(AT), ATv=0. Compute u’v=(Az) v=ax’ATv=
x?(ATv) =27 0=0, hence u_lv for arbitrary u,v, and C(A) LN (AT). [

iv. C(A)NN(AT)=1{0} (0 is the only vector both in C(A) and N(AT)).
Proof. (By contradiction, reductio ad absurdum). Assume there might be be C(A) and
be N(AT) and b+0. Since be C(A), 3z € R" such that b= Ax. Since be N(AT),
A'b= AT(Ax)=0. Note that = #+ 0 since x = 0 = b = 0, contradicting assumptions.
Multiply equality A" Az =0 on left by 7,

rTATAxz=0= (Az)(Ax)=b'b=|b||>=0,

thereby obtaining b =0, using norm property 3 (Lesson 4, p5). Contradiction.



FTLA proof (v)

v. C(A)e N(AT)=R™
Proof. (iii) and (iv) have established that C(A), N(A™) are orthogonal complements
C(A)=N(AT)L NAT)=C(A)".

By Lemma 2 it results that C'(A) & N(AT) = R™. (Reminder: Proof of Lemma 2 is
postponed until discussion of the Gram-Schmidt procedure). ]

The remainder of the FTLA is established by considering B = AT, e.g., since it has been
established in (v) that C'(B)® N(AT)=1R", replacing B= A" yields C(AT) o N(A)=R™,
etc.

Remark. The great widespread aplicability of linear algebra results in large part due to the
complete characterization of the possible solutions to Ax =b provided by the FTLA and the
orthogonal decomposition of the domain and codomain.



