Lesson 9: Proof of fundamental theorem of linear algebra

- Recall: to each matrix $A \in \mathbb{R}^{m \times n}$ associate four fundamental subspaces:
 - 1. Column space, $C(A) = \{b \in \mathbb{R}^m | \exists x \in \mathbb{R}^n \text{ such that } b = Ax\} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m reachable by linear combination of columns of A
 - 2. Left null space, $N(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{R}^m | \mathbf{A}^T \mathbf{y} = 0 \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m not reachable by linear combination of columns of \mathbf{A}
 - 3. Row space, $R(A) = C(A^T) = \{c \in \mathbb{R}^n | \exists y \in \mathbb{R}^m \text{ such that } c = A^T y\} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^m reachable by linear combination of rows of A
 - 4. Null space, $N(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{A} \mathbf{x} = 0 \} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^n not reachable by linear combination of rows of \mathbf{A}

The fundamental theorem of linear algebra (FTLA) states

$$C(\mathbf{A}), N(\mathbf{A}^T) \leq \mathbb{R}^m, C(\mathbf{A}) \perp N(\mathbf{A}^T), C(\mathbf{A}) \cap N(\mathbf{A}^T) = \{\mathbf{0}\}, C(\mathbf{A}) \oplus N(\mathbf{A}^T) = \mathbb{R}^m$$

 $C(\mathbf{A}^T), N(\mathbf{A}) \leq \mathbb{R}^n, C(\mathbf{A}^T) \perp N(\mathbf{A}), C(\mathbf{A}^T) \cap N(\mathbf{A}) = \{\mathbf{0}\}, C(\mathbf{A}^T) \oplus N(\mathbf{A}) = \mathbb{R}^n$

- New concepts:
 - Proof techniques, properties of direct sums

Properties of direct sums

Lemma 1. Let \mathcal{U}, \mathcal{V} , be subspaces of vector space \mathcal{W} . Then $\mathcal{W} = \mathcal{U} \oplus \mathcal{V}$ if and only if

i.
$$W = U + V$$
, and

$$ii. \mathcal{U} \cap \mathcal{V} = \{0\}.$$

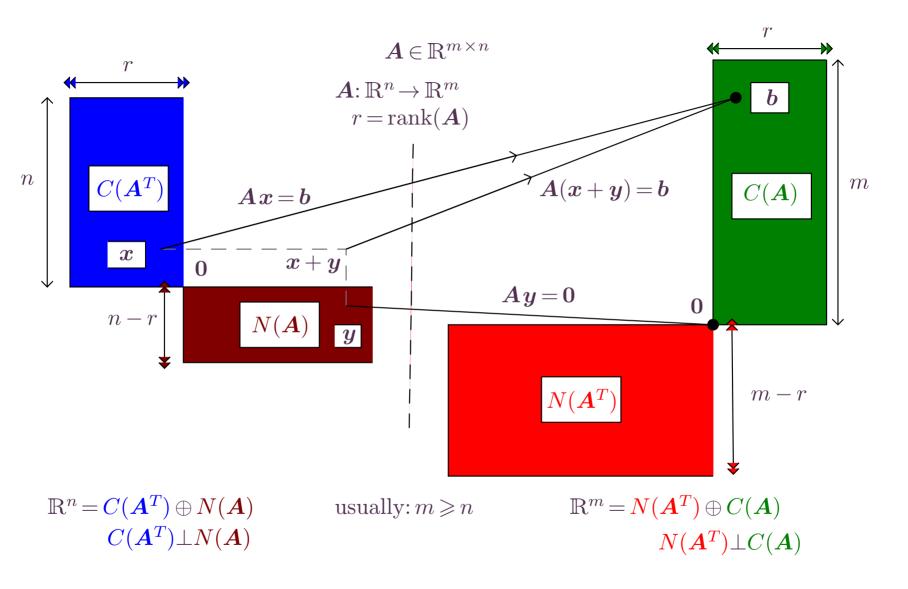
Proof. $W = U \oplus V \Rightarrow W = U + V$ by definition of direct sum, sum of vector subspaces. To prove that $W = U \oplus V \Rightarrow U \cap V = \{0\}$, consider $w \in U \cap V$. Since $w \in U$ and $w \in V$ write

$$w = w + 0 \ (w \in \mathcal{U}, 0 \in \mathcal{V}), \ w = 0 + w \ (0 \in \mathcal{U}, w \in \mathcal{V}),$$

and since expression w=u+v is unique, it results that w=0. Now assume (i),(ii) and establish an unique decomposition. Assume there might be two decompositions of $w\in \mathcal{W}$, $w=u_1+v_1$, $w=u_2+v_2$, with $u_1,\,u_2\in \mathcal{U}$, $v_1,\,v_2\in \mathcal{V}$. Obtain $u_1+v_1=u_2+v_2$, or $x=u_1-u_2=v_2-v_1$. Since $x\in \mathcal{U}$ and $x\in \mathcal{V}$ it results that x=0, and $u_1=u_2$, $v_1=v_2$, i.e., the decomposition is unique.

Lemma 2. Orthogonal complements of \mathbb{R}^m ($m \in \mathbb{N}$, finite), $\mathcal{U}, \mathcal{V} \leq \mathbb{R}^m$, $\mathcal{U} = \mathcal{V}^{\perp}$, $\mathcal{V} = \mathcal{U}^{\perp}$, form a direct sum $\mathcal{U} \oplus \mathcal{V} = \mathbb{R}^m$. (proved after discussion of Gram-Schmidt procedure)

FTLA - Graphical representation



FTLA proof (i & ii)

i. $C(A) \leq \mathbb{R}^m$ (column space is vector subspace of codomain of $A: \mathbb{R}^n \to \mathbb{R}^m$)

Proof. Consider arbitrary $u, v \in C(A)$, $\alpha, \beta \in \mathbb{R}$. Verify vector subspace properties (Lesson 7 p.4):

- i. Inclusion (elements of C(A) are in \mathbb{R}^m) $u \in \mathbb{R}^m$, yes by definition of $C(A) = \{b \in \mathbb{R}^m | \exists x \in \mathbb{R}^n \text{ such that } b = Ax\}$. (This immediately results from definitions and will not be shown explicitly in following proofs).
- ii. Closed $(\alpha u + \beta v \in C(A))$. By definition of C(A), $u, v \in C(A)$ implies existence of $x, y \in \mathbb{R}^n$ such that u = Ax, v = Ay. Compute $\alpha u + \beta v = \alpha(Ax) + \beta(Ay) = A(\alpha x + \beta y)$, and note that since $\alpha x + \beta y \in \mathbb{R}^n$, $\alpha u + \beta v \in C(A)$.
- ii. $N(A^T) \leq \mathbb{R}^m$ (left null space is vector subspace of domain of $A: \mathbb{R}^n \to \mathbb{R}^m$)

Proof. Consider arbitrary $\alpha, \beta \in \mathbb{R}$, $x, y \in N(A^T) \Rightarrow A^T x = 0$, $A^T y = 0$. Compute $A^T(\alpha x + \beta y) = \alpha(A^T x) + \beta(A^T y) = \alpha \cdot 0 + \beta \cdot 0 = 0$, hence $\alpha x + \beta y \in N(A^T)$

FTLA Proof (iii,iv)

iii. $C(\mathbf{A}) \perp N(\mathbf{A}^T)$ (column space is orthogonal to left null space).

Proof. Consider arbitrary $u \in C(A)$, $v \in N(A^T)$. By definition of C(A), $\exists x \in \mathbb{R}^n$ such that u = Ax, and by definition of $N(A^T)$, $A^Tv = 0$. Compute $u^Tv = (Ax)^Tv = x^TA^Tv = x^T(A^Tv) = x^T = 0$, hence $u \perp v$ for arbitrary u, v, and $C(A) \perp N(A^T)$.

iv. $C(A) \cap N(A^T) = \{0\}$ (0 is the only vector both in C(A) and $N(A^T)$).

Proof. (By contradiction, reductio ad absurdum). Assume there might be $b \in C(A)$ and $b \in N(A^T)$ and $b \neq 0$. Since $b \in C(A)$, $\exists x \in \mathbb{R}^n$ such that b = Ax. Since $b \in N(A^T)$, $A^Tb = A^T(Ax) = 0$. Note that $x \neq 0$ since $x = 0 \Rightarrow b = 0$, contradicting assumptions. Multiply equality $A^TAx = 0$ on left by x^T ,

$$\boldsymbol{x}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \Rightarrow (\boldsymbol{A} \boldsymbol{x})^T (\boldsymbol{A} \boldsymbol{x}) = \boldsymbol{b}^T \boldsymbol{b} = \|\boldsymbol{b}\|^2 = \boldsymbol{0},$$

thereby obtaining b = 0, using norm property 3 (Lesson 4, p5). Contradiction.

FTLA proof (v)

v.
$$C(\mathbf{A}) \oplus N(\mathbf{A}^T) = \mathbb{R}^m$$

Proof. (iii) and (iv) have established that $C(A), N(A^T)$ are orthogonal complements

$$C(\mathbf{A}) = N(\mathbf{A}^T)^{\perp}, N(\mathbf{A}^T) = C(\mathbf{A})^{\perp}.$$

By Lemma 2 it results that $C(A) \oplus N(A^T) = \mathbb{R}^m$. (Reminder: Proof of Lemma 2 is postponed until discussion of the Gram-Schmidt procedure).

The remainder of the FTLA is established by considering $B = A^T$, e.g., since it has been established in (v) that $C(B) \oplus N(A^T) = \mathbb{R}^n$, replacing $B = A^T$ yields $C(A^T) \oplus N(A) = \mathbb{R}^m$, etc.

Remark. The great widespread aplicability of linear algebra results in large part due to the complete characterization of the possible solutions to Ax = b provided by the FTLA and the orthogonal decomposition of the domain and codomain.