Lesson 10: Rank-nullity theorem, General solution of Axz=b (A€ R™*™)

e New concepts:
— rank-nullity theorem
— Inverse matrix

— Gauss-Jordan algorithm to find inverse



Matrix rank. matrix nullity

Definition. The rank of a matrix A € R™*"™ is the dimension of the column space r =

dim C(A).

Definition. The nullity of a matrix A € R"*" s the dimension of the null space z =
dim N(A).

Proposition. The dimension of the column space is equal to the dimension of the row space.

Corollary. The system Ax=b, Ac R™*", x € R"™, b€ R™ has a solution if bc IR"™. The
solution is unique if N(A)={0} (the nullity of A is zero)



Nonsingular matrices

Definition. A square matrix has the same number of columns as rows, A € R"*"™.
Definition. A linear system with a null right hand side, Ax =0 is said to be homogeneous.

Definition. The square matrix A € R"™*" s nonsingular if the only solution to the homo-
geneous linear system Ax=0isx=0cR"™.

Proposition. The columns of a nonsingular matrix are linearly independent. A square matrix
with linearly independent columns is nonsingular

Proof. The column form of the matrix is A=( a; as ... a,, ), witha,cR™ forj=1,...,
m. The matrix vector product Ax expresses the linear combination of column vectors

Ax = riai1+ roao + ... + Q.

If A € R™*"™ js nonsingular then the only solution of Ax = 0 is * = 0 hence {aq, ...,
a,,} are linearly independent. Conversely, if {ai, ..., a,,} are linearly independent then
r1a1 + roas + ... + Tpa,, =0 implies © =0, or Ax =0, hence A nonsingular.



Nonsingular matrices row reduce to the identity matrix

e For I € R™*™ the identity matrix
C(I)=R™ N(IT)={0} CI")=R™ NI)={0} rank(I)=m
e For AcR™*™ nonsingular

C(A)=R™ N(AT)={0} C(AT)=R™ N(A)={0} rank(A)=m

Proposition. Let B € R™*™ be the row reduced form of A € R™*"™. The matrix A is
nonsingular if and only if (iff) B is the identity matrix.

Proof. (=) A nonsingular has rank m, hence m linearly independent rows and the row
reduction procedure produces B = 1.

(<) If B = I the row reduction of the augmented system ( A 0) ~ ( I 0 ) with unique
solution & =0, hence A nonsingular



Systems with nonsingular matrices have unique solutions

Proposition. A € R™*"™ nonsingular is equivalent to existence of a unique solution to
Ax=> forany be R™.

Proof. (=) Row reduction of the augmented system (A b) ~ ( I ¢) with unique solution.

(«=) Choose b= 0 to obtain unique solution x =0 hence A is nonsingular.

e Interpret the above as follows:

e The same vector in R™ is expressed as Ax, a linear combination of columns of
A cR"™*™ and as a linear combination Ib, of the columns of I € R™*™

e For every x we obtain a unique b= Ax

e When A is nonsingular we obtain a unique x for every b



Matrix inverse

Definition. Given a nonsingular matrix A € R"™*™, the inverse of A is an m X m matrix
denoted as A~ that satisfies the properties

AA'=AA=T,

with I the m x m identity matrix.

When A is nonsingular, the solution to the linear system Ax =b, can be expressed using the
Inverse as

xr=A"1b.



Computation of the inverse: Gauss-Jordan

o Consider A € R™*™ nonsingular. Denote the inverse of A as X = A~ X ¢ R™*™,
e The column vector formof X is X =(x; ... x,, ), x;, € R™ fori=1,2,....m

e By definition of the inverse B satisfies

AX=A(xy ... ¢y, )=( Az, ... Az, )=I1=(e1 ... €, )

e Finding the inverse is therefore equivalent to solving the m linear systems Ax; =¢;

e This can be carried out by applying the row-reduction technique to the augmented matrix
(A | I)~(I ] X))

e By carrying out steps to obtain the identity matrix in the left half, the matrix resulting in
the right half is the inverse matrix, X = A~!



Gauss-Jordan example (using Octave)

Apply the Gauss-Jordan algorithm to find the inverse of

1 2 1
A=| -1 0 2
2 -1 -4

octave> A=[1 2 1; -1 0 2; 2 -1 -4]; AX=[A eye(3)]; format rat; disp(AX);

1 2 1 1 0 0

-1 0 2 0 1 0

2 -1 -4 0 0 1
octave> AX(2,:)=AX(2,:)+AX(1,:); AX(3,:)=AX(3,:)-2%xAX(1,:); disp(AX);

1 2 1 1 0 0

0 2 3 1 1 0

0 -5 -6 -2 0 1
octave> AX(2,:)=(1/2)*AX(2,:); disp(AX);

1 2 1 1 0 0

0 1 3/2 1/2 1/2 0

0 -5 -6 -2 0 1

octave>



Gauss-Jordan example (continued)

octave> AX(3,:)=AX(3,:)+5xAX(2,:); disp(AX);

1 2 1 1 0 0
0 1 3/2 1/2 1/2 0
0 0 3/2 1/2 5/2 1
octave> AX(3,:)=(2/3)*AX(3,:); disp(AX);
1 2 1 1 0 0
0 1 3/2 1/2 1/2 0
0 0 1 1/3 5/3 2/3
octave> AX(2,:)=AX(2,:)-(3/2)*AX(3,:); AX(1,:)=AX(1,:)-AX(3,:); disp(AX);
1 2 0 2/3 -5/3 -2/3
0 1 0 0 -2 -1
0 0 1 1/3 5/3 2/3
octave> AX(1,:)=AX(1,:)-2%AX(2,:); X=AX(:,4:6); disp(AX);
1 0 0 2/3 7/3 4/3
0 1 0 0 -2 -1
0 0 1 1/3 5/3 2/3
octave> disp([A*xX X*Al);
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

octave>






