- New concepts:
 - rank-nullity theorem
 - Inverse matrix
 - Gauss-Jordan algorithm to find inverse

Definition. The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of the column space $r = \dim C(A)$.

Definition. The nullity of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of the null space $z = \dim N(A)$.

Proposition. The dimension of the column space is equal to the dimension of the row space.

Corollary. The system A x = b, $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ has a solution if $b \in \mathbb{R}^m$. The solution is unique if $N(A) = \{0\}$ (the nullity of A is zero)

Definition. A square matrix has the same number of columns as rows, $A \in \mathbb{R}^{m \times m}$.

Definition. A linear system with a null right hand side, Ax = 0 is said to be homogeneous.

Definition. The square matrix $A \in \mathbb{R}^{m \times m}$ is nonsingular if the only solution to the homogeneous linear system Ax = 0 is $x = 0 \in \mathbb{R}^{m}$.

Proposition. The columns of a nonsingular matrix are linearly independent. A square matrix with linearly independent columns is nonsingular

Proof. The column form of the matrix is $A = (a_1 \ a_2 \ \dots \ a_m)$, with $a_j \in \mathbb{R}^m$ for $j = 1, \dots, m$. The matrix vector product Ax expresses the linear combination of column vectors

$$Ax = x_1a_1 + x_2a_2 + \ldots + x_ma_m.$$

If $A \in \mathbb{R}^{m \times m}$ is nonsingular then the only solution of Ax = 0 is x = 0 hence $\{a_1, ..., a_m\}$ are linearly independent. Conversely, if $\{a_1, ..., a_m\}$ are linearly independent then $x_1a_1 + x_2a_2 + ... + x_ma_m = 0$ implies x = 0, or Ax = 0, hence A nonsingular.

• For $I \in \mathbb{R}^{m \times m}$ the identity matrix

 $C(\boldsymbol{I}) = \mathbb{R}^m \quad N(\boldsymbol{I}^T) = \{\boldsymbol{0}\} \quad C(\boldsymbol{I}^T) = \mathbb{R}^m \quad N(\boldsymbol{I}) = \{\boldsymbol{0}\} \quad \mathrm{rank}(\boldsymbol{I}) = m$

• For $A \in \mathbb{R}^{m \times m}$ nonsingular

 $C(\boldsymbol{A}) = \mathbb{R}^m \quad N(\boldsymbol{A}^T) = \{\boldsymbol{0}\} \quad C(\boldsymbol{A}^T) = \mathbb{R}^m \quad N(\boldsymbol{A}) = \{\boldsymbol{0}\} \quad \mathrm{rank}(\boldsymbol{A}) = m$

Proposition. Let $B \in \mathbb{R}^{m \times m}$ be the row reduced form of $A \in \mathbb{R}^{m \times m}$. The matrix A is nonsingular if and only if (iff) B is the identity matrix.

Proof. (\Rightarrow) *A* nonsingular has rank *m*, hence *m* linearly independent rows and the row reduction procedure produces B = I.

(\Leftarrow) If B = I the row reduction of the augmented system (A 0) ~ (I 0) with unique solution x = 0, hence A nonsingular

Proposition. $A \in \mathbb{R}^{m \times m}$ nonsingular is equivalent to existence of a unique solution to Ax = b for any $b \in \mathbb{R}^m$.

Proof. (\Rightarrow) *Row reduction of the augmented system* $(\mathbf{A} \mathbf{b}) \sim (\mathbf{I} \mathbf{c})$ *with unique solution.*

 (\Leftarrow) Choose b = 0 to obtain unique solution x = 0 hence A is nonsingular.

- Interpret the above as follows:
 - The same vector in \mathbb{R}^m is expressed as Ax, a linear combination of columns of $A \in \mathbb{R}^{m \times m}$, and as a linear combination Ib, of the columns of $I \in \mathbb{R}^{m \times m}$
 - For every x we obtain a unique b = A x
 - When A is nonsingular we obtain a unique x for every b

Definition. Given a nonsingular matrix $A \in \mathbb{R}^{m \times m}$, the inverse of A is an $m \times m$ matrix denoted as A^{-1} that satisfies the properties

$$AA^{-1} = A^{-1}A = I$$
,

with I the $m \times m$ identity matrix.

When A is nonsingular, the solution to the linear system Ax = b, can be expressed using the inverse as

$$\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b}.$$

- Consider $A \in \mathbb{R}^{m \times m}$ nonsingular. Denote the inverse of A as $X = A^{-1}$, $X \in \mathbb{R}^{m \times m}$.
- The column vector form of \boldsymbol{X} is $\boldsymbol{X} = (\ \boldsymbol{x}_1 \ ... \ \boldsymbol{x}_m \)$, $\boldsymbol{x}_i \in \mathbb{R}^m$ for i=1,2,...,m
- By definition of the inverse **B** satisfies

$$oldsymbol{A}oldsymbol{X} = oldsymbol{A}(oldsymbol{x}_1 \ \dots \ oldsymbol{x}_m \) = (oldsymbol{A}oldsymbol{x}_1 \ \dots \ oldsymbol{A}oldsymbol{x}_m \) = oldsymbol{I} = (oldsymbol{e}_1 \ \dots \ oldsymbol{e}_m \)$$

- Finding the inverse is therefore equivalent to solving the m linear systems $Ax_i = e_i$
- This can be carried out by applying the row-reduction technique to the augmented matrix

$$(A \mid I) \sim (I \mid X)$$

• By carrying out steps to obtain the identity matrix in the left half, the matrix resulting in the right half is the inverse matrix, $X = A^{-1}$

Apply the Gauss-Jordan algorithm to find the inverse of

$$\boldsymbol{A} = \left(\begin{array}{rrrr} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & -1 & -4 \end{array} \right)$$

octave	e> A=[1	2 1; -1	0 2; 2	-1 -4];	AX=[A e	eye(3)];	format	t rat; disp(AX);			
	1	2	1	1	0	0					
	-1	0	2	0	1	0					
	2	-1	-4	0	0	1					
octave	<pre>octave> AX(2,:)=AX(2,:)+AX(1,:); AX(3,:)=AX(3,:)-2*AX(1,:); disp(AX);</pre>										
	1	2	1	1	0	0					
	0	2	3 -6	1	1	0					
	0	-5	-6	-2	0	1					
octave	octave> AX(2,:)=(1/2)*AX(2,:); disp(AX);										
	1	2	1	1	0	0					
	0	1	3/2 -6			0					
	0	-5	-6	-2	0	1					
octave	e>										

Gauss-Jordan example (continued)

octave> AX((3,:)=AX((3,:)+5*	AX(2,:);	disp(AX));				
1	2	1	1	0	0				
0	1	3/2	1/2	1/2	0				
0			1/2		1				
octave> AX((3,:)=(2/	/3)*AX(3	,:); dis	p(AX);					
1	2	1	1	0	0				
0	1	3/2	1/2	1/2	0				
0	0			5/3					
octave> AX((2,:)=AX((2,:)-(3	/2)*AX(3	,:); AX(1,:)=AX(1	,:)-AX(3,:); disp(AX);	
1	2	0	2/3	-5/3	-2/3				
0	1	0	0	-2	-1				
0	0	1		5/3					
octave> AX((1,:)=AX((1,:)-2*	AX(2,:);	X=AX(:,	4:6); dis	sp(AX);			
1	0	0	2/3	7/3	4/3				
0	1	0	0	-2	-1				
0	0	1	1/3	5/3	2/3				
octave> dis	sp([A*X)	(*A]);							
1	0	0	1	0	0				
0	1	0	0	1	0				
0	0	1	0	0	1				
octave>									