
Lesson 10: Rank-nullity theorem, General solution of Ax= b (A2Rm�m)

� New concepts:

¡ rank-nullity theorem

¡ Inverse matrix

¡ Gauss-Jordan algorithm to �nd inverse



Matrix rank. matrix nullity

De�nition. The rank of a matrix A 2 Rm�n is the dimension of the column space r =
dimC(A).

De�nition. The nullity of a matrix A 2 Rm�n is the dimension of the null space z =
dimN(A).

Proposition. The dimension of the column space is equal to the dimension of the row space.

Corollary. The system Ax= b, A2Rm�n, x2Rn, b2Rm has a solution if b2Rm. The
solution is unique if N(A)= f0g (the nullity of A is zero)



Nonsingular matrices

De�nition. A square matrix has the same number of columns as rows, A2Rm�m.

De�nition. A linear system with a null right hand side, Ax=0 is said to be homogeneous.

De�nition. The square matrix A 2Rm�m is nonsingular if the only solution to the homo-
geneous linear system Ax=0 is x=02Rm.

Proposition. The columns of a nonsingular matrix are linearly independent. A square matrix
with linearly independent columns is nonsingular

Proof. The column form of the matrix is A=( a1 a2 ::: am ), with aj2Rm for j=1; :::;
m. The matrix vector product Ax expresses the linear combination of column vectors

Ax=x1a1+x2a2+ :::+xmam:

If A 2 Rm�m is nonsingular then the only solution of Ax = 0 is x = 0 hence fa1; :::;
amg are linearly independent. Conversely, if fa1; :::; amg are linearly independent then
x1a1+x2a2+ :::+xmam=0 implies x=0, or Ax=0, hence A nonsingular.



Nonsingular matrices row reduce to the identity matrix

� For I 2Rm�m the identity matrix

C(I)=Rm N(IT)= f0g C(IT)=Rm N(I)= f0g rank(I)=m

� For A2Rm�m nonsingular

C(A)=Rm N(AT)= f0g C(AT)=Rm N(A)= f0g rank(A)=m

Proposition. Let B 2 Rm�m be the row reduced form of A 2 Rm�m. The matrix A is
nonsingular if and only if (i�) B is the identity matrix.

Proof. ()) A nonsingular has rank m, hence m linearly independent rows and the row
reduction procedure produces B= I.

(() If B = I the row reduction of the augmented system ( A 0) � ( I 0 ) with unique
solution x=0, hence A nonsingular



Systems with nonsingular matrices have unique solutions

Proposition. A 2 Rm�m nonsingular is equivalent to existence of a unique solution to
Ax= b for any b2Rm.

Proof. ()) Row reduction of the augmented system ( A b)� ( I c) with unique solution.

(() Choose b=0 to obtain unique solution x=0 hence A is nonsingular.

� Interpret the above as follows:

� The same vector in Rm is expressed as Ax, a linear combination of columns of
A2Rm�m, and as a linear combination Ib, of the columns of I 2Rm�m

� For every x we obtain a unique b=Ax

� When A is nonsingular we obtain a unique x for every b



Matrix inverse

De�nition. Given a nonsingular matrix A 2Rm�m, the inverse of A is an m �m matrix
denoted as A¡1 that satis�es the properties

AA¡1=A¡1A= I ;

with I the m�m identity matrix.

When A is nonsingular, the solution to the linear system Ax=b, can be expressed using the
inverse as

x=A¡1b:



Computation of the inverse: Gauss-Jordan

� Consider A2Rm�m nonsingular. Denote the inverse of A as X =A¡1, X 2Rm�m.

� The column vector form of X is X =( x1 ::: xm ), xi2Rm for i=1; 2; :::;m

� By de�nition of the inverse B satis�es

AX =A( x1 ::: xm )= ( Ax1 ::: Axm )= I =( e1 ::: em )

� Finding the inverse is therefore equivalent to solving the m linear systems Axi= ei

� This can be carried out by applying the row-reduction technique to the augmented matrix

( A j I )� ( I j X )

� By carrying out steps to obtain the identity matrix in the left half, the matrix resulting in
the right half is the inverse matrix, X =A¡1



Gauss-Jordan example (using Octave)

Apply the Gauss-Jordan algorithm to �nd the inverse of

A=

0@ 1 2 1
¡1 0 2
2 ¡1 ¡4

1A
octave> A=[1 2 1; -1 0 2; 2 -1 -4]; AX=[A eye(3)]; format rat; disp(AX);

1 2 1 1 0 0
-1 0 2 0 1 0
2 -1 -4 0 0 1

octave> AX(2,:)=AX(2,:)+AX(1,:); AX(3,:)=AX(3,:)-2*AX(1,:); disp(AX);

1 2 1 1 0 0
0 2 3 1 1 0
0 -5 -6 -2 0 1

octave> AX(2,:)=(1/2)*AX(2,:); disp(AX);

1 2 1 1 0 0
0 1 3/2 1/2 1/2 0
0 -5 -6 -2 0 1

octave>



Gauss-Jordan example (continued)

octave> AX(3,:)=AX(3,:)+5*AX(2,:); disp(AX);

1 2 1 1 0 0
0 1 3/2 1/2 1/2 0
0 0 3/2 1/2 5/2 1

octave> AX(3,:)=(2/3)*AX(3,:); disp(AX);

1 2 1 1 0 0
0 1 3/2 1/2 1/2 0
0 0 1 1/3 5/3 2/3

octave> AX(2,:)=AX(2,:)-(3/2)*AX(3,:); AX(1,:)=AX(1,:)-AX(3,:); disp(AX);

1 2 0 2/3 -5/3 -2/3
0 1 0 0 -2 -1
0 0 1 1/3 5/3 2/3

octave> AX(1,:)=AX(1,:)-2*AX(2,:); X=AX(:,4:6); disp(AX);

1 0 0 2/3 7/3 4/3
0 1 0 0 -2 -1
0 0 1 1/3 5/3 2/3

octave> disp([A*X X*A]);

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

octave>




