- New concepts:
- Data fitting as a linear algebra problem
- Linear regression
- Normal system solution to least squares problem
- Interpolation as linear algebra problem
- In many scientific fields the problem of determining the straight line $y(x)=a_{0}+a_{1} x$, that best approximate data $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, m\right\}$ arises. The problem is to find the coefficients a_{0}, a_{1}, and this is referred to as the linear regression problem.
- The calculus approach: Form sum of squared differences between $y\left(x_{i}\right)$ and y_{i}

$$
S\left(a_{0}, a_{1}\right)=\sum_{i=1}^{m}\left(y\left(x_{i}\right)-y_{i}\right)^{2}=\sum_{i=1}^{m}\left(a_{0}+a_{1} x_{i}-y_{i}\right)^{2}
$$

and seek $\left(a_{0}, a_{1}\right)$ that minimize $S\left(a_{0}, a_{1}\right)$ by solving the equations

$$
\begin{gathered}
\frac{\partial S}{\partial a_{0}}=0 \Rightarrow 2 \sum_{i=1}^{m}\left(a_{0}+a_{1} x_{i}-y_{i}\right)=0 \Leftrightarrow m a_{0}+\left(\sum_{i=1}^{m} x_{i}\right) a_{1}=\sum_{i=1}^{m} y_{i} \\
\frac{\partial S}{\partial a_{1}}=0 \Rightarrow 2 \sum_{i=1}^{m}\left(a_{0}+a_{1} x_{i}-y_{i}\right) x_{i}=0 \Leftrightarrow\left(\sum_{i=1}^{m} x_{i}\right) a_{0}+\left(\sum_{i=1}^{m} x_{i}^{2}\right) a_{1}=\sum_{i=1}^{m} x_{i} y_{i}
\end{gathered}
$$

- Form a vector of errors with components $e_{i}=y\left(x_{i}\right)-x_{i}$. Recognize that $y\left(x_{i}\right)$ is a linear combination of 1 and x_{i} with coefficients a_{0}, a_{1}, or in vector form

$$
\boldsymbol{e}=\left(\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right)\binom{a_{0}}{a_{1}}-\boldsymbol{y}=\left(\begin{array}{ll}
\mathbf{1} & \boldsymbol{x}
\end{array}\right) \boldsymbol{a}-\boldsymbol{y}=\boldsymbol{A} \boldsymbol{a}-\boldsymbol{y}
$$

- The norm of the error vector $\|e\|$ is smallest when $A a$ is as close as possible to y. Since $\boldsymbol{A} \boldsymbol{a}$ is within the column space of $C(\boldsymbol{A}), \boldsymbol{A} \boldsymbol{a} \in C(\boldsymbol{A})$, the required condition is for \boldsymbol{e} to be orthogonal to the column space

$$
\begin{gather*}
\boldsymbol{e} \perp C(\boldsymbol{A}) \Rightarrow \boldsymbol{A}^{T} \boldsymbol{e}=\binom{\mathbf{1}^{T}}{\boldsymbol{x}^{T}} \boldsymbol{e}=\binom{\mathbf{1}^{T} \boldsymbol{e}}{\boldsymbol{x}^{T} \boldsymbol{e}}=\binom{0}{0}=\mathbf{0} \\
\boldsymbol{A}^{T} \boldsymbol{e}=\mathbf{0} \Leftrightarrow \boldsymbol{A}^{T}(\boldsymbol{A} \boldsymbol{a}-\boldsymbol{y})=0 \Leftrightarrow\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{a}=\boldsymbol{A}^{T} \boldsymbol{y} \\
\left.\boldsymbol{e}\right|_{\boldsymbol{y}} ^{\boldsymbol{a}} \tag{A}\\
\end{gather*}
$$

1. Generate some data on a line and perturb it by some random quantities
```
octave> m=1000; x=(0:m-1)/m; a0=2; a1=3; yex=a0+a1*x; y=(yex+rand(1,m)-0.5)';
octave>
```

2. Form the matrices $\boldsymbol{A}, \boldsymbol{N}=\boldsymbol{A}^{T} \boldsymbol{A}$, vector $\boldsymbol{b}=\boldsymbol{A}^{T} \boldsymbol{y}$
```
octave> A=ones (m,2); A(:,2)=x (:); N=A'**A; b=A'*y;
```

octave>
3. Solve the system $N a=b$, and form the linear combination $\tilde{y}=A a$ closest to y

```
octave> a=N\b; disp(a'); ytilde=A*a;
    2.0182 2.9738
octave>
```

- Plot the perturbed data (black dots), the result of the linear regression (green circles), as well as the line used to generate yex (red line)

```
octave> plot(x,y,'.k',x,ytilde,'og',x,yex,'r'); title('Linear regression example');
    xlabel('x'); ylabel('y,yex,ytilde'); cd /home/student; print data.eps;
```


- The key observation is that the matrix A has columns obtained by evaluating the functions $1, x$ at the values $x_{1}, x_{2}, \ldots, x_{m}$. This leads to easy extension to data fitting to higher degree polynomials, for instance a quadratic

$$
e=\left(\begin{array}{lll}
1 & x & x^{2}
\end{array}\right) \boldsymbol{a}-\boldsymbol{y}=\boldsymbol{A} \boldsymbol{a}-\boldsymbol{y}, \min \|\boldsymbol{e}\| \Rightarrow\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{a}=\boldsymbol{A}^{T} \boldsymbol{y} \Leftrightarrow \boldsymbol{N} a=\boldsymbol{b}
$$

```
octave> m=1000; x=(0:m-1)/m; a0=2; a1=3; a2=-5.; yex=a0+a1*x+a2*x. ^2; y=(yex+rand(1,m)-
        0.5)';
octave> A=ones(m,3); A(:,2)=x(:); A(:,3)=x. - 2; N=A'*A; b=A'*y;
octave> a=N\b;
octave> ytilde=A*a; disp(a');
    2.0239 2.8873-4.8881
```

```
octave> disp(norm(y-ytilde)/norm(y)/m);
```

```
octave> disp(norm(y-ytilde)/norm(y)/m);
```

 \(1.4494 \mathrm{e}-04\)
    ```
octave>
```

- Plot the perturbed data (black dots), the result of the quadratic regression (green circles), as well as the parabola used to generate yex (red line)

```
octave> plot(x,y,'.k',x,ytilde,'og',x,yex,'r'); title('Quadratic regression example');
    xlabel('x'); ylabel('y,yex,ytilde'); cd /home/student; print data.eps;
octave>
```


- Up to now we have considered linear data fitting
- When the data conforms to a non-linear law,it is often possible to transform the problem into a linear dependency
- Example: Find best fit of coefficients A, E_{a} within Arrhenius law $k=A \exp \left(-E_{a} /(R T)\right)$ to measured data $\mathcal{D}=\left\{\left(T_{i}, k_{i}\right), i=1, \ldots, m\right\}$.
- Note that in the $k(T)$ law, k depends linearly on A, but nonlinearly on E_{a}. By taking the natural logarithm, and setting $y=\ln k, x=1 /(R T), a_{0}=\ln A, a_{1}=-E_{a}$, we obtain a linear dependence

$$
y=\ln k=\ln A-E_{a} x=a_{0}+a_{1} x
$$

of the same type as before

Definition. The polynomial interpolant of data $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, m\right\}$ with $x_{i} \neq x_{j}$ if $i \neq j$ is a polynomial of degree $m-1$

$$
p_{m-1}(x)=a_{0}+a_{1} x+\ldots+a_{m-1} x^{m-1}
$$

that satisfies the conditions $p_{m-1}\left(x_{i}\right)=y_{i}, i=1, \ldots, m$.

- We can apply the same approach, and formulate the normal equation system. In this particular case, the error e can be made zero.

```
octave> m=4; x=(0:m-1)'; a0=2; a1=3; a2=-5.; a3=-1; yex=a0+a1*x+a2*x.^2+a3*x.^3;
octave> A=ones(m,m); A(:,2)=x(:); A(:,3)=x.^2; A(:,4)=x. ^3; N=A'*A; b=A'*yex;
octave> a=N\b; disp(a');
    2.00000 3.00000-5.00000-1.00000
```

Note that the coefficients used to generate the data are recovered exactly.

