Lesson 14: Inner product spaces

e New concepts
— projection in an inner product space
— linear spaces of functions
— Gram-Schmidt algorithm in an inner product space

— Fourier analysis



Inner Product

Recall the definition introduced in Lesson 4

Definition. Consider vectors w,v,w €V and scalar a € S. The function

(,):VxV—=S

is an inner product if:

1. {(u,v)=(v,u) (Conjugate symmetry)
2 (au,v)=a(u,v),(u+v,w)=(u,w)+ (v,w) (Linearity in first argument)

3. (u,u) >0, (u,u)=0=u=0 (Positive definiteness)

This definition is constructed to remain valid for complex scalars S = €. Recall the conjugate
of a complex number z=x +iy is z=x —iy. The dot product (u,v)=u’v, between vectors
u, v € R™ is the most familiar example of an inner product. The term scalar product is a
synonym for inner product.



Linear spaces of functions

e Recall that a function consists of a two sets X , Y (domain, codomain), and a procedure to
associate just one element in Y to an element in X, f: X — Y. The value of the function
for x € X is often denoted as y= f(z) € Y. The term “associate” is imprecise, hence the
following technical definitions

Definition. The Cartesian product of two sets X ,Y is the set of ordered pairs X xY ={(x,
ylreX, yeY}.

Definition. A function defined on non-empty sets X ,Y, f: X —Y, is a subset of X x Y such
that Vx € X, dly= f(z)eY.

e A vector with m real components, uw € R"™ is also a function u: {1, ..., m} — R, defined
by the set of ordered pairs {(1,u1), (2,us2), ..., (M, unm)}

e The concept of a linear space and operations in a linear space that have been so far
been considered for vectors, readily generalize to linear spaces of functions, with myriad
applications throughout quantitative science.



Linear spaces of functions

Restate the definition from Lesson 7, replacing the notation u, v, w indicative of V = R™,
with f, g,h €V, for some general V.

Definition. (V,S,+) is a linear space if forany f,g,h €V, and any o, B €S, with S a scalar
field, the following properties hold:

Closed. f+g€V

Associativity. f+(g+h)=(f+g)+h

Null element. 40 €V such that f+0=f

Inverse element. 3(— f) such that f+(—f)=0
Commutativity. f+g=g-+ f

Distributivity over scalar addition. (a+ 8)f=af + (g
Distributivity over vector addition. o(f + g)=af + ag
Scalar identity. 1c S=1f=f

The close analogy allows us to work with functions, much the same way we work with vectors.



Examples of spaces of linear functions

o Cla,bl={f|f:]a,b] =R, f continuous}
e C(R)={f|f:R—R, finfinitely differentiable}
e space of piecewise continuous functions

o Pr={f|fR—=R,f(t+T)= f(t), f piecewise continuous}, space of periodic piecewise
continuous functions, with period T’

We would like to carry out operations defined for vectors (e.g., projection) in the linear
function spaces. This can be accomplished if an inner product space is defined for the linear
space of functions.

o f f(t) g(t)dt is an inner product for C'[a, b]

° Tfo t)dt is an inner product for Pr
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The norm of a function, or orthogonality between two functions are subsequently defined
through the inner product
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