Lesson 21: Eigendecomposition Existence and Computation (Direct methods)

- Algebraic, geometric multiplicities
- Eigenvalues as roots of characteristic polynomial
- Eigenvectors as basis vectors for $N(\boldsymbol{A} \lambda \boldsymbol{I})$
- Computation in Matlab/Octave

Algebraic, geometric multiplicity

Definition 1. The algebraic multiplicity of an eigenvalue λ is the number of times it appears as a repeated root of the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$

Example. $p(\lambda) = \lambda(\lambda - 1)(\lambda - 2)^2$ has two single roots $\lambda_1 = 0$, $\lambda_2 = 1$ and a repeated root $\lambda_{3,4} = 2$. The eigenvalue $\lambda = 2$ has an algebraic multiplicity of 2

Definition 2. The geometric multiplicity of an eigenvalue λ is the dimension of the null space of $A - \lambda I$

Definition 3. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be defective

Theorem. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal to the algebraic multiplicity of that eigenvalue.

Eigenvalues as roots of characteristic polynomial

- Finding eigenvalues as roots of the characteristic polynomial $p(\lambda) = \det(A \lambda I)$ is suitable for small matrices $A \in \mathbb{R}^{m \times m}$.
 - analytical root-finding formulas are available only for $m \leq 4$
 - small errors in characteristic polynomial coefficients can lead to large errors in roots
- Octave/Matlab procedures to find characteristic polynomial
 - poly(A) function returns the coefficients
 - roots(p) function computes roots of the polynomial

```
octave> A=[5 -4 2; 5 -4 1; -2 2 -3]; disp(A);
5 -4 2
5 -4 1
-2 2 -3
octave> p=poly(A); disp(p);
1.00000 2.00000 -1.00000 -2.00000
octave> r=roots(p); disp(r');
1.0000 -2.00000 -1.00000
octave>
```

Eigenvectors as basis vectors for $N(\mathbf{A} - \lambda \mathbf{I})$

• Find eigenvectors as non-trivial solutions of system $(A - \lambda I)x = 0$

$$\lambda_1 = 1 \Rightarrow \mathbf{A} - \lambda_1 \mathbf{I} = \begin{pmatrix} 4 & -4 & 2 \\ 5 & -5 & 1 \\ -2 & 2 & -4 \end{pmatrix} \sim \begin{pmatrix} -2 & 2 & -4 \\ 0 & 0 & -6 \\ 5 & -5 & 1 \end{pmatrix} \sim \begin{pmatrix} -2 & 2 & -4 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

Note convenient choice of row operations to reduce amount of arithmetic, and use of knowledge that $A - \lambda_1 I$ is singular to deduce that last row must be null

• In traditional form the above row-echelon reduced system corresponds to

$$\begin{cases}
-2x_1 + 2x_2 - 4x_3 &= 0 \\
0x_1 + 0x_2 - 6x_3 &= 0 \\
0x_1 + 0x_2 + 0x_3 &= 0
\end{cases} \Rightarrow \mathbf{x} = \alpha \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \|\mathbf{x}\| = 1 \Rightarrow \alpha = 1/\sqrt{2}$$

In Octave/Matlab the computations are carried out by the null function

```
octave> null(A-eye(3))'
( 0.70711  0.70711  0 )
```

Ill-conditioning example

• The eigenvalues of $I \in \mathbb{R}^{3 \times 3}$ are $\lambda_{1,2,3} = 1$, but small errors in numerical computation can give roots of the characteristic polynomial with imaginary parts

```
octave> lambda=roots(poly(eye(3))); disp(lambda')

1.00001 - 0.00001i  1.00001 + 0.00001i  0.99999 - 0.00000i

octave>
```

• In the following example notice that if we slightly perturb A (by a quantity less than 0.0005=0.05%), the eigenvalues get perturb by a larger amount, e.g. 0.13%.

```
octave> A=[-2 1 -1; 5 -3 6; 5 -1 4]; disp([eig(A) eig(A+0.001*(rand(3,3)-0.5))])

-2.0000 + 0.0000i   3.0000 + 0.0000i
3.0000 + 0.0000i   -1.9998 + 0.0189i
-2.0000 + 0.0000i   -1.9998 - 0.0189i
```

```
octave>
```

General computational eigenvalue routine eig

• Extracting eigenvalues and eigenvectors is a commonly encountered operation, and specialized functions exist to carry this out, including the eig function

```
[X,L]=eig(A); disp([L X]);
octave>
 -2.00000 0.00000 0.00000 -0.57735 -0.00000 0.57735
  0.00000 3.00000 0.00000 0.57735 0.70711 -0.57735
  0.00000 0.00000 -2.00000 0.57735 0.70711 -0.57735
octave> disp(null(A-3*eye(3)))
  0.00000
  0.70711
  0.70711
octave> disp(null(A+2*eye(3)))
 0.57735
 -0.57735
 -0.57735
octave>
```

Defective matrices

• Recall definitions of eigenvalue algebraic m_{λ} and geometric multiplicities n_{λ} .

Definition. A matrix which has $n_{\lambda} < m_{\lambda}$ for any of its eigenvalues is said to be defective.

```
octave> A=[-2 \ 1 \ -1; \ 5 \ -3 \ 6; \ 5 \ -1 \ 4]; [X,L]=eig(A); disp(L);
Diagonal Matrix
 -2.0000
     0 3.0000
            0 -2.0000
octave> disp(X);
 -5.7735e-01 -1.9153e-17 5.7735e-01
  5.7735e-01 7.0711e-01 -5.7735e-01
  5.7735e-01 7.0711e-01 -5.7735e-01
octave> disp(null(A+2*eye(3)));
  0.57735
 -0.57735
 -0.57735
octave> disp(rank(X))
octave>
```