
Lesson 24: Jordan decomposition, Singular Value Decomposition

� Review of matrix decompositions:

¡ LU =A factorization (Gaussian elimination), used to solve linear systems (compute
coordinates in new basis)

¡ QR=A factorization (Gram-Schmidt algorithm), used to solve least squares problems
(compute best possible approximation)

¡ AX = X�, eigenproblem. If X nonsingular, eigendecomposition X�X¡1 = A
(reduction to diagonal form)

� Additional matrix decompositions:

¡ QTQT =A, Schur decomposition (reduction to triangular form)

¡ PJP¡1=A, Jordan decomposition (reduction to disjoint eigenspaces)

¡ U�V T = A, singular value decomposition (SVD, reduction to diagonal form, but
with di�erent bases in the domain, codomain)



Yet another factorization? Why?

� Eigendecomposition A=X�X¡1 is very useful in solving systems of ODEs, even more
so when A is unitarily diagonalizable A=Q�QT .

¡ ODE system u0=Au, u(0)=u0 can be rewritten as v 0=�v, with v=QTu

¡ Solution of v 0=�v is v(t)= e�tv(0)= e�tQTu(0), hence u(t)=Qe�tQTu(0)
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u(t)= eAtu(0)

� Above is an elegant procedure to solve ODEs, but only works if A is diagonalizable

� A can always be reduced to triangular form A = QTQT , and introducing w = QTu
leads to w 0=Tw, but this triangular system is much more di�cult to solve than v 0=�v

� A natural question arises: if A is not diagonalizable, how close can we get to a diagonal
form?

� Answer: the Jordan decomposition A=PJP¡1



Jordan factorization

� Any matrix A2Rm�m can be factorized as A=PJP¡1, P 2Rm�m nonsingular,
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Singular Value Decomposition

� Singular value decomposition (SVD), for any A2Rm�n, A=U�V T , with U 2Rm�m,
V 2Rn�n orthogonal, �2R+

m�n diagonal

� The SVD is determined by eigendecomposition of ATA, and AAT

¡ AT A = (U�V T)T (U�V T) = V (�T� ) V T , an eigendecomposition of ATA. The
columns of V are eigenvectors of ATA and called right singular vectors of A

¡ AAT = (U�V T)(U�T V T)T = U (��T) UT , an eigendecomposition of ATA. The
columns of U are eigenvectors of AAT and called left singular vectors of A

¡ The matrix � has form
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and �i are the singular values of A.



SVD properties, applications

� The singular value decomposition (SVD) furnishes complete information about A

¡ rank(A)= r (the number of non-zero singular values)

¡ U ; V are orthogonal basis for the domain and codomain of A

� The SVD has numerous applications. As a representative example, principal component
analysis is used to discover inherent natural descriptions of phenomena

� Let X 2Rm�n represent n observations of a phenomenon characterized by m variables.
Example: n=365 daily measurements of temperatures atm=1000 geographical locations

� Ask whether there are inherent patterns in the data by carrying out the SVD X=U�V T

� The �rst few columns of U ;V re�ect dominant 'modes', or 'principal components' in the
data



Data compression using SVD

� Rewrite SVD as

A=U�V T =( U1 ::: Um )
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� Each matrix UiViT is a rank-one matrix

� The singular values are always given ordered �1>�2> :::>�r> 0

� A reduced representation can be obtained by using fewer terms in the sum
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Example of data compression: images

Here's a sequence of images (each a matrix) that correspond various increasing values of s


