Lesson 24: Jordan decomposition, Singular Value Decomposition

e Review of matrix decompositions:

LU = A factorization (Gaussian elimination), used to solve linear systems (compute
coordinates in new basis)

QQ R = A factorization (Gram-Schmidt algorithm), used to solve least squares problems
(compute best possible approximation)

AX = X A, eigenproblem. If X nonsingular, eigendecomposition X A X ! = A
(reduction to diagonal form)

e Additional matrix decompositions:

QTQ" = A, Schur decomposition (reduction to triangular form)
PJP 1= A, Jordan decomposition (reduction to disjoint eigenspaces)

UX VT = A, singular value decomposition (SVD, reduction to diagonal form, but
with different bases in the domain, codomain)



Yet another factorization? Why?

e Eigendecomposition A =X A X ~! is very useful in solving systems of ODEs, even more
so when A is unitarily diagonalizable A= QA Q™.

— ODE system u'= Awu, u(0) =uq can be rewritten as v/ = A v, with v=Q"u
—  Solution of v/ =Awv is v(t) = e v(0) = e2'QTu(0), hence u(t) = Qe QTu(0)

— Since eAt=T+ At + A2t2+---=Q(I+At+%A2t2 )QT Qert QT
u(t) =e'u(0)

e Above is an elegant procedure to solve ODEs, but only works if A is diagonalizable

e A can always be reduced to triangular form A = QT'Q", and introducing w = Q"u
leads to w’ = Tw, but this triangular system is much more difficult to solve than v/=Aw

e A natural question arises: if A is not diagonalizable, how close can we get to a diagonal
form?

e Answer: the Jordan decomposition A=PJP !



Jordan factorization

e Any matrix A € R™*™ can be factorized as A= PJP~!, P € R™*™ nonsingular,

with p the number of distinct eigenvalues of A, and J; € R™**™* given by
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with 7, the algebraic multiplicity of eigenvalue Ay, >~ ny=m.



Singular Value Decomposition

e Singular value decomposition (SVD), for any Ac R™*", A=UX V", with U € R™*"™,
V € R"*™ orthogonal, ¥ € R"" " diagonal

e The SVD is determined by eigendecomposition of A7A, and AA”

— ATA=(USVHT(UBVT) =V (X1%) VT, an eigendecomposition of ATA. The
columns of V are eigenvectors of A7A and called right singular vectors of A

— AAT =SV USTVHT =U (%) UT, an eigendecomposition of ATA. The
columns of U are eigenvectors of A A’ and called left singular vectors of A

— The matrix X has form
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and o; are the singular values of A.



SVD properties, applications

e The singular value decomposition (SVD) furnishes complete information about A
— rank(A) =7 (the number of non-zero singular values)
— U,V are orthogonal basis for the domain and codomain of A

e The SVD has numerous applications. As a representative example, principal component
analysis is used to discover inherent natural descriptions of phenomena

e Let X € R™*" represent n observations of a phenomenon characterized by m variables.
Example: n =365 daily measurements of temperatures at m = 1000 geographical locations

o Ask whether there are inherent patterns in the data by carrying out the SVD X =U X V7T

e The first few columns of U,V reflect dominant 'modes’, or 'principal components’ in the
data



Data compression using SVD

e Rewrite SVD as

(0 O\,

. Vi r
A=USVT=(U, ... Uy) o, =) UV
0 v i=1

e FEach matrix U;V;! is a rank-one matrix
e The singular values are always given ordered 01 > 05> ... >0, >0

e A reduced representation can be obtained by using fewer terms in the sum
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Example of data compression: images

Here's a sequence of images (each a matrix) that correspond various increasing values of s




