- The Singular Value Decomposition:
- Encapsulates all aspects of a matrix (hence of a linear transformation)
- Can be used to solve the basic problems of linear algebra
- Is widely used in data reduction
- Singular value decomposition (SVD), for any $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{T}$, with $\boldsymbol{U} \in \mathbb{R}^{m \times m}$, $\boldsymbol{V} \in \mathbb{R}^{n \times n}$ orthogonal, $\boldsymbol{\Sigma} \in \mathbb{R}_{+}^{m \times n}$ diagonal
- The SVD is determined by eigendecomposition of $\boldsymbol{A}^{T} \boldsymbol{A}$, and $\boldsymbol{A} \boldsymbol{A}^{T}$
- $\boldsymbol{A}^{T} \boldsymbol{A}=\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T}\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)=\boldsymbol{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right) \boldsymbol{V}^{T}$, an eigendecomposition of $\boldsymbol{A}^{T} \boldsymbol{A}$. The columns of \boldsymbol{V} are eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$ and called right singular vectors of \boldsymbol{A}
$-\boldsymbol{A} \boldsymbol{A}^{T}=\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)\left(\boldsymbol{U} \boldsymbol{\Sigma}^{T} \boldsymbol{V}^{T}\right)^{T}=\boldsymbol{U}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T}\right) \boldsymbol{U}^{T}$, an eigendecomposition of $\boldsymbol{A} \boldsymbol{A}^{T}$. The columns of \boldsymbol{U} are eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{T}$ and called left singular vectors of \boldsymbol{A}
- The matrix Σ has zero elements except for the diagonal that contains σ_{i}, the singular values of \boldsymbol{A} computed as the square roots of the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$ (or $\boldsymbol{A} \boldsymbol{A}^{T}$)

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccccc}
\sigma_{1} & & & & & \\
& \sigma_{2} & & & & \\
& & \ddots & & & \\
& & & \sigma_{r} & & \\
& & & & 0 & \\
& & & & & \ddots
\end{array}\right) \in \mathbb{R}_{+}^{m \times n}
$$

- The SVD of $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ reveals: $\operatorname{rank}(\boldsymbol{A})$, bases for $C(\boldsymbol{A}), N\left(\boldsymbol{A}^{T}\right), C\left(\boldsymbol{A}^{T}\right), N(\boldsymbol{A})$

$$
\boldsymbol{A}=\left(\begin{array}{llllll}
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{r} & \boldsymbol{u}_{r+1} & \ldots & \boldsymbol{u}_{m}
\end{array}\right)\left(\begin{array}{ccccc}
\sigma_{1} & & & & \\
& \ddots & & & \\
& & \sigma_{r} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{v}_{1}{ }^{T} \\
\vdots \\
\boldsymbol{v}_{r}{ }^{T} \\
\boldsymbol{v}_{r+1}{ }^{T} \\
\vdots \\
\boldsymbol{v}_{n}{ }^{T}
\end{array}\right)
$$

- Change of coordinates (solving a linear system) $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{A} \in \mathbb{R}^{m \times m}, \boldsymbol{x}, \boldsymbol{b} \in \mathbb{R}^{m}$

$\boldsymbol{L} \boldsymbol{U}$ solution	Operations $($ flops $)$	SVD solution	Operations (flops)
Factor $\boldsymbol{L} \boldsymbol{U}=\boldsymbol{A}$	$\mathcal{O}\left(\frac{2 m^{3}}{3}\right)$	Factor $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\boldsymbol{A}$	$\mathcal{O}\left(11 m^{3}\right)$
Forward substitution $\boldsymbol{L} \boldsymbol{y}=\boldsymbol{b}$	$\mathcal{O}\left(\frac{m^{2}}{2}\right)$	Compute $\boldsymbol{c}=\boldsymbol{U}^{T} \boldsymbol{b}$	$\mathcal{O}\left(m^{2}\right)$
Back substitute $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{y}$	$\mathcal{O}\left(\frac{m^{2}}{2}\right)$	Compute $\boldsymbol{d}=\boldsymbol{\Sigma}^{-1} \boldsymbol{c}$ $d_{i}=c_{i} / \sigma_{i}, i=1, \ldots, m$ Compute $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{d}$	$\mathcal{O}(m)$
		$\mathcal{O}\left(m^{2}\right)$	

flop $=$ floating point operation, defined as an addition and multiplication

- SVD can be used for solving a linear system, but is generally more expensive than the standard $L \boldsymbol{U}$ factorization (Gaussian elimination)
- Find closest approximation to $b \in \mathbb{R}^{m}$ by linear combination of column vectors of $\boldsymbol{A} \in$ $\mathbb{R}^{m \times n}, m>n, \min _{x}\|\boldsymbol{b}-\boldsymbol{A x}\|$

$\boldsymbol{Q} \boldsymbol{R}$ solution	Operations (flops)	SVD solution	Operations (flops)
Factor $\boldsymbol{Q} \boldsymbol{R}=\boldsymbol{A}$	$\mathcal{O}\left(2 m n^{2}-\frac{2 n^{3}}{3}\right)$	Factor $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\boldsymbol{A}$	$\mathcal{O}\left(2 m n^{2}+11 n^{3}\right)$
Compute $\boldsymbol{c}=\boldsymbol{Q}^{T} \boldsymbol{b}$	$\mathcal{O}(m n)$	Compute $\boldsymbol{c}=\boldsymbol{U}^{T} \boldsymbol{b}$	$\mathcal{O}(m n)$
Back substitute $\boldsymbol{R} \boldsymbol{x}=\boldsymbol{c}$	$\mathcal{O}\left(\frac{n^{2}}{2}\right)$	Compute $\boldsymbol{d}=\boldsymbol{\Sigma}^{+} \boldsymbol{c}$	$\mathcal{O}(n)$
		$d_{i}=c_{i} / \sigma_{i}, i=1, \ldots, n$	$\mathcal{O}\left(n^{2}\right)$

flop $=$ floating point operation, defined as an addition and multiplication

- SVD can be used for solving a least squares problem, but is generally more expensive than the standard $Q R$ factorization (Gram-Schmidt orthogonalization)

