Lesson 12: General solution of Ax = b $(A \in \mathbb{R}^{m \times m})$

- New concepts:
 - Nonsingular matrix
 - Inverse matrix
 - Gauss-Jordan algorithm to find inverse

Nonsingular matrices

Definition. A square matrix has the same number of columns as rows, $A \in \mathbb{R}^{m \times m}$.

Definition. A linear system with a null right hand side, Ax = 0 is said to be homogeneous.

Definition. The square matrix $A \in \mathbb{R}^{m \times m}$ is nonsingular if the only solution to the homogeneous linear system Ax = 0 is $x = 0 \in \mathbb{R}^m$.

Proposition. The columns of a nonsingular matrix are linearly independent. A square matrix with linearly independent columns is nonsingular

Proof. The column form of the matrix is $A = (a_1 \ a_2 \ ... \ a_m)$, with $a_j \in \mathbb{R}^m$ for j = 1, ..., m. The matrix vector product Ax expresses the linear combination of column vectors

$$Ax = x_1a_1 + x_2a_2 + ... + x_ma_m$$
.

If $A \in \mathbb{R}^{m \times m}$ is nonsingular then the only solution of Ax = 0 is x = 0 hence $\{a_1, ..., a_m\}$ are linearly independent. Conversely, if $\{a_1, ..., a_m\}$ are linearly independent then $x_1a_1 + x_2a_2 + ... + x_ma_m = 0$ implies x = 0, or Ax = 0, hence A nonsingular.

Nonsingular matrices row reduce to the identity matrix

• For $I \in \mathbb{R}^{m \times m}$ the identity matrix

$$C(\boldsymbol{I}) = \mathbb{R}^m \ N(\boldsymbol{I}^T) = \{\boldsymbol{0}\} \ C(\boldsymbol{I}^T) = \mathbb{R}^m \ N(\boldsymbol{I}) = \{\boldsymbol{0}\} \ \operatorname{rank}(\boldsymbol{I}) = m$$

• For $A \in \mathbb{R}^{m \times m}$ nonsingular

$$C(\mathbf{A}) = \mathbb{R}^m \ N(\mathbf{A}^T) = \{\mathbf{0}\} \ C(\mathbf{A}^T) = \mathbb{R}^m \ N(\mathbf{A}) = \{\mathbf{0}\} \ \operatorname{rank}(\mathbf{A}) = m$$

Proposition. Let $B \in \mathbb{R}^{m \times m}$ be the row reduced form of $A \in \mathbb{R}^{m \times m}$. The matrix A is nonsingular if and only if (iff) B is the identity matrix.

Proof. (\Rightarrow) \boldsymbol{A} nonsingular has rank m, hence m linearly independent rows and the row reduction procedure produces $\boldsymbol{B} = \boldsymbol{I}$.

(\Leftarrow) If B = I the row reduction of the augmented system $(A \ 0) \sim (I \ 0)$ with unique solution x = 0, hence A nonsingular

Systems with nonsingular matrices have unique solutions

Proposition. $A \in \mathbb{R}^{m \times m}$ nonsingular is equivalent to existence of a unique solution to Ax = b for any $b \in \mathbb{R}^m$.

Proof. (\Rightarrow) Row reduction of the augmented system $(A \ b) \sim (I \ c)$ with unique solution. (\Leftarrow) Choose b=0 to obtain unique solution x=0 hence A is nonsingular.

- Interpret the above as follows:
 - The same vector in \mathbb{R}^m is expressed as Ax, a linear combination of columns of $A \in \mathbb{R}^{m \times m}$, and as a linear combination Ib, of the columns of $I \in \mathbb{R}^{m \times m}$
 - ullet For every x we obtain a unique $b\!=\!A\,x$
 - When A is nonsingular we obtain a unique x for every b

Matrix inverse

Definition. Given a nonsingular matrix $A \in \mathbb{R}^{m \times m}$, the inverse of A is an $m \times m$ matrix denoted as A^{-1} that satisfies the properties

$$AA^{-1} = A^{-1}A = I$$
,

with I the $m \times m$ identity matrix.

When A is nonsingular, the solution to the linear system Ax = b, can be expressed using the inverse as

$$x = A^{-1}b.$$

Computation of the inverse: Gauss-Jordan

- Consider $A \in \mathbb{R}^{m \times m}$ nonsingular. Denote the inverse of A as $X = A^{-1}$, $X \in \mathbb{R}^{m \times m}$.
- The column vector form of $m{X}$ is $m{X}=(m{x}_1 \ ... \ m{x}_m)$, $m{x}_i \in \mathbb{R}^m$ for i=1,2,...,m
- ullet By definition of the inverse B satisfies

$$oldsymbol{A}oldsymbol{X} = oldsymbol{A}(oldsymbol{x}_1 \ ... \ oldsymbol{A}oldsymbol{x}_1 \ ... \ oldsymbol{A}oldsymbol{x}_1 \ ... \ oldsymbol{A}oldsymbol{x}_m) = oldsymbol{I} = (oldsymbol{e}_1 \ ... \ oldsymbol{e}_m)$$

- ullet Finding the inverse is therefore equivalent to solving the m linear systems $oldsymbol{A}oldsymbol{x}_i\!=\!oldsymbol{e}_i$
- This can be carried out by applying the row-reduction technique to the augmented matrix

$$(A \mid I) \sim (I \mid X)$$

• By carrying out steps to obtain the identity matrix in the left half, the matrix resulting in the right half is the inverse matrix, ${m X}={m A}^{-1}$

Gauss-Jordan example (using Octave)

Apply the Gauss-Jordan algorithm to find the inverse of

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & -1 & -4 \end{array} \right)$$

```
octave> A=[1 2 1; -1 0 2; 2 -1 -4]; AX=[A eye(3)]; format rat; disp(AX);
   octave> AX(2,:)=AX(2,:)+AX(1,:); AX(3,:)=AX(3,:)-2*AX(1,:); disp(AX);
   octave> AX(2,:)=(1/2)*AX(2,:); disp(AX);
   octave>
```

Gauss-Jordan example (continued)

```
octave> AX(3,:)=AX(3,:)+5*AX(2,:); disp(AX);
                 1
                                     0
             3/2 1/2 1/2
3/2 1/2 5/2
                                       0
     0
           0
octave> AX(3,:)=(2/3)*AX(3,:); disp(AX);
                                     0
     1
                               0
           1 3/2 1/2 1/2 0
     0
              1 1/3 5/3
     0
           0
                                     2/3
octave> AX(2,:)=AX(2,:)-(3/2)*AX(3,:); AX(1,:)=AX(1,:)-AX(3,:); disp(AX);
                       2/3 -5/3 -2/3
                    0 -2 -1
     0
                  0
                       1/3 5/3 2/3
     0
octave> AX(1,:)=AX(1,:)-2*AX(2,:); X=AX(:,4:6); disp(AX);
                       2/3 7/3
                                     4/3
                    0 -2 -1
     0
                  0
                    1/3 5/3 2/3
     0
           0
                  1
octave> disp([A*X X*A]);
     1
            0
                  0
                               0
                                     0
                        1
     0
                        0
                               1
                                     0
           0
     0
                  1
                        0
                               0
                                     1
octave>
```