Lesson 13: General solution of Ax=0b (A € R™*™) matrix formulation

e New concepts:
— Gaussian multiplier matrix

— LU factorization



Matrix formulation of row combinations

e Recall the basic operation in row echelon reduction: constructing a linear combination of
rows to form zeros beneath the main diagonal, e.g.
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e This can be stated as a matrix multiplication operation, with ;1 =a;1 /a11
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Gaussian multiplier

Definition. The matrix
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with 1; i, = agfﬁ,z /a/,gk,%C and A = (a(k)> the matrix obtained after step k of row echelon
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reduction (or, equivalently, Gaussian elimination) is called a Gaussian multiplier matrix.



Matrix formulation of Gaussian elimination

e For A € R™*™ nonsingular, the successive steps in row echelon reduction (or Gaussian
elimination) correspond to successive multiplications on the left by Gaussian multiplier
matrices
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e The inverse of a Gaussian multiplier is
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LU factorization

e From (L,, 1L,, »5...LoL;)A=U obtain
A= (L, _1Ly,_s..LoL))"'U=L{'Ly'-....L,;' U=LU

e Due to the simple form of L; ' the matrix L is easily obtained as
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LU factorization formulation of linear system solution

e Using the concept of an LU factorization, finding the solution to a linear system Ax =5
can be formulated as the following steps:

1. Find the LU factorization, LU = A

2. Replace factorization into system and regroup Az =b< (LU )x =b< Ly=>b. Solve
the lower triangular Ly = b system to find y

3. Solve the upper triangular system Ux =y to find x

e The above formulation of the steps within Gaussian elimination is very useful in computer
calculations



