Lesson 14: Gram-Schmidt process, QR = A

- New concepts:
 - Orthonormal vector set
 - Transforming a basis set into an orthonormal set by Gram-Schmidt
 - $oldsymbol{Q}oldsymbol{R}$ factorization of a matrix

Orthonormal vector set

Definition. The Dirac delta symbol δ_{ij} is defined as

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Definition. A set of vectors $\{u_1,...,u_n\}$ is said to be orthonormal if

$$\boldsymbol{u}_i^T \boldsymbol{u}_j = \delta_{ii}$$

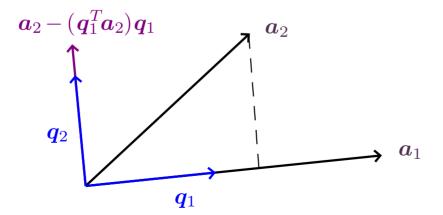
• The column vectors of the identity matrix are orthonormal

$$I = (e_1 \dots e_m)$$

$$e_i^T e_j = \delta_{ij}$$

Gram-Schmidt algorithm

- An arbitrary vector set can be transformed into an orthonormal set by the Gram-Schmidt algorithm
- Idea:
 - Start with an arbitrary direction a_1
 - Divide by its norm to obtain a unit-norm vector $oldsymbol{q}_1 = oldsymbol{a}_1 / \|oldsymbol{a}_1\|$
 - Choose another direction a_2
 - Subtract off its component along previous direction(s) $a_2 (q_1^T a_2) q_1$
 - Divide by norm $m{q}_2\!=\!(m{a}_2\!-\!(m{q}_1^T\!m{a}_2)m{q}_1)/\|m{a}_2\!-\!(m{q}_1^T\!m{a}_2)m{q}_1\|$
 - Repeat the above



Matrix factorization formulation of Gram-Schmidt

• Consider $A \in \mathbb{R}^{m \times n}$ with linearly independent columns. By linear combinations of the columns of A a set of orthonormal vectors $q_1, ..., q_n$ will be obtained. This can be expressed as a matrix product

with $Q \in \mathbb{R}^{m \times n}$, $R \in \mathbb{R}^{n \times n}$. The matrix R is upper-triangular (also referred to as right-triangular) since to find vector q_1 only vector a_1 is used, to find vector q_2 only vectors a_1, a_2 are used

The above is equivalent to the system

$$\begin{cases}
 a_1 = r_{11}q_1 \\
 a_2 = r_{12}q_1 + r_{22}q_2 \\
 \vdots \\
 a_n = r_{1n}q_1 + r_{2n}q_2 + \dots + r_{nn}q_n
\end{cases}$$

Gram-Schmidt algorithm

- The system can be solved to find R, Q by:
 - 1. Imposing $\|q_1\| = 1 \Rightarrow r_{11} = \|a_1\|$, $q_1 = a_1/r_{11}$
 - 2. Computing projections of $a_2, ..., a_n$ along q_1

$$r_{12} = \boldsymbol{q}_1^T \boldsymbol{a}_2, ..., r_{1n} = \boldsymbol{q}_1^T \boldsymbol{a}_n$$

3. Subtracting components along q_1 from $a_2,...,a_n$

$$\begin{cases} a_2 - r_{12} q_1 = r_{22} q_2 \\ \vdots \\ a_n - r_{1n} q_1 = r_{2n} q_2 + \dots + r_{nn} q_n \end{cases}$$

4. The above steps reduced the size of the system by 1. Repeating the steps completes the solution. The overall process is known as the Gram-Schmidt algorithm

Gram-Schmidt algorithm

Algorithm (Gram-Schmidt)

```
Given m vectors \boldsymbol{a}_1,...,\boldsymbol{a}_m Initialize \boldsymbol{q}_1=\boldsymbol{a}_1,...,\boldsymbol{q}_m=\boldsymbol{a}_m, \boldsymbol{R}=\boldsymbol{I} for i=1 to m r_{ii}=(\boldsymbol{q}_i^T\boldsymbol{q}_i)^{1/2};\;\boldsymbol{q}_i=\boldsymbol{q}_i/r_{ii} for j=i+1 to m r_{ij}=\boldsymbol{q}_i^T\boldsymbol{a}_j;\;\boldsymbol{q}_j=\boldsymbol{q}_j-r_{ij}\boldsymbol{q}_i end end return \boldsymbol{Q},\boldsymbol{R}
```

${\it QR}$ factorization

• For $A \in \mathbb{R}^{m \times n}$ with linearly independent columns, the Gram-Schmidt algorithm furnishes a factorization

$$QR = A$$

with $Q \in \mathbb{R}^{m \times n}$ with orthonormal columns and $R \in \mathbb{R}^{n \times n}$ an upper triangular matrix.

ullet Since the column vectors within Q were obtained through linear combinations of the column vectors of A we have

$$C(\boldsymbol{A}) = C(\boldsymbol{Q})$$